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Quadratic Programming

An optimisation problem with a quadratic objective
function and linear constraints is called a quadratic
program.

Also arise as sub-problems in methods for general
constrained optimisation.

The general quadratic program (QP) can be stated as:

min
x

q(x) =
1

2
xTGx + xT c (1)

subject to aTi x = bi , i ∈ E , (2)

aTi x ≥ bi , i ∈ I. (3)

G is a symmetric n × n matrix, E and I are finite sets of
indices.

c , x and {ai}, i ∈ E ∪ I, are vectors in Rn.
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Quadratic Programming

If the Hessian matrix G is positive semi-definite, then (1)
is a convex QP.

For convex QPs the problem is often similar in difficulty to
a linear program.

Strictly convex QPs are those in which G is positive
definite.

Non-convex QPs, in which G is an indefinite matrix, are
more challenging because they can have several stationary
points and local minima.

We focus primarily on convex quadratic programs.
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Equality Constrained Quadratic Programs

Consider the case in which only equality constraints are
present.

Techniques for this special case are applicable also to
problems with inequality constraints, as some algorithms
for general QP require the solution of an
equality-constrained QP at each iteration.

The equality constrained QP is given by:

min
x

q(x) =
1

2
xTGx + xT c (4)

subject to Ax = b, (5)

A is the m × n Jacobians of constraints (with m ≤ n)
whose rows are aTi , i ∈ E .
b is the vector in Rm whose components are bi , i ∈ E .
Assume A has full row rank (rank m) so the constraints
are consistent.



Lecture

Saurav

DIRECT
SOLUTION
OF THE KKT
SYSTEM

INEQUALITY-
CONSTRAINED
PROBLEMS

ITERATIVE
SOLUTION
OF THE KKT
SYSTEM

5/56

First-Order Necessary Conditions

The first-order necessary conditions for x∗ to be a solution
of (4) state that there is a vector λ∗ such that the
following system of equations is satisfied:[

G −AT

A 0

] [
x∗

λ∗

]
=

[
−c
b

]
(6)

These conditions are a consequence of the general result
for first-order optimality conditions.

λ∗ is the vector of Lagrange multipliers.
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First-Order Necessary Conditions

The system (6) can be rewritten in a form that is useful
for computation by expressing x∗ as x∗ = x + p, where x
is some estimate of the solution and p is the desired step.

By introducing this notation and rearranging the equations[
G AT

A 0

] [
−p
λ∗

]
=

[
g
h

]
(7)

h = Ax − b, g = c + Gx , p = x∗ − x .

The matrix in (7) is called the Karush–Kuhn–Tucker
(KKT) matrix.
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First-Order Necessary Conditions

Z denotes the n × (n −m) matrix whose columns are a
basis for the null space of A.

That is Z has full rank and satisfies AZ = 0.

Lemma

Let A have full row rank, and assume that the reduced-Hessian
matrix ZTGZ is positive definite. Then the KKT matrix

K =

[
G AT

A 0

]
(8)

is nonsingular, and hence there is a unique vector pair (x∗, λ∗)
satisfying (6).
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First-Order Necessary Conditions

Suppose the KKT matrix is singular, therefore there exists
vectors w and v such that[

G AT

A 0

] [
w
v

]
= 0 (9)

Since Aw = 0, we have from the above

0 =

[
w
v

]T [
G AT

A 0

] [
w
v

]
= wTGw

Since w lies in the null space of A, it can be written as
w = Zu for some vector u ∈ Rn−m.
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First-Order Necessary Conditions

Therefore, we have

0 = wTGw = uTZTGZu,

which by positive definiteness of ZTGZ implies that u = 0.

Therefore, w = 0, and, AT v = 0.

Full row rank of A then implies that v = 0.

We conclude that equation (9) is satisfied only if w = 0
and v = 0, so the matrix is non-singular, as claimed.
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Example

Consider the quadratic programming problem

min q(x) =3x21 + 2x1x2 + x1x3 + 2.5x22 + 2x2x3 + 2x23 − 8x1

− 3x2 − 3x3,

subject to x1 + x3 = 3, x2 + x3 = 0.
(10)

We rewrite the problem by defining

G =

6 2 1
2 5 2
1 2 4

 , c =

−8
−3
−3

 , A =

[
1 0 1
0 1 1

]
, b =

[
3
0

]

The solution x∗ and the optimal Lagrange multiplier vector λ∗

are: x∗ = (2,−1, 1)T , λ∗ = (3,−2)T .

G is a positive definite matrix and the null-space basis matrix
can be defined as

Z = (−1,−1, 1)T
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Second-Order Sufficient Condition

When the conditions of the above Lemma are satisfied,
there exists a unique vector pair (x∗, λ∗) that satisfies the
first-order necessary conditions.

Under the above stated circumstances even the
second-order sufficient conditions are also satisfied at
(x∗, λ∗), so x∗ is a strict local minimiser.

It can also be shown that x∗ is a global solution.

Theorem

Let A have full row rank and assume that the reduced-Hessian
matrix ZTGZ is positive definite. Then the vector x∗ satisfying
the first-order necesary condition (6) is the unique global
solution of (4)
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Proof of Theorem

Let x be any other feasible point (satisfying Ax = b).

Let p = x∗ − x .

Since Ax∗ = Ax = b, we have that Ap = 0.

Substituting into the objective function we get

q(x) =
1

2
(x∗ − p)TG (x∗ − p) + cT (x∗ − p)

=
1

2
pTGp − pTGx∗ − cTp + q(x∗)

(11)

From first-order necessary conditions we have
Gx∗ = −c + ATλ∗.

From Ap = 0 we have

pTGx∗ = pT (−c + ATλ∗) = −pT c .
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Proof of Theorem

By substituting the above into (11) we get

q(x) =
1

2
pTGp + q(x∗).

Since p lies in the null space of A, we can write p = Zu for
some vector u ∈ Rn−m, so that

q(x) =
1

2
uTZTGZu + q(x∗).

By positive definiteness of ZTGZ , we conclude that
q(x) > q(x∗), except when u = 0, that is, when x = x∗.

Therefore, x∗ is the unique global solution.
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Classification of the solutions

Assuming the KKT system has solutions

(
x∗
λ∗

)
:

1 Strong local minimiser at x∗ ⇐⇒ ZTGZ pd.

2 Infinite solutions if ZTGZ is psd and singular.

3 Unbounded if ZTGZ indefinite.

The KKT system can be solved with various linear algebra
techniques.
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Inertia of Matrix

Definition

Define the inertia of a symmetric matrix K to be the scalar
triple that indicates the numbers n+, n−, and n0 of positive,
negative, and zero eigenvalues, respectively, that is,

inertia(K ) = (n+, n−, n0)

The following result characterizes the inertia of the KKT
matrix.

Definition

Let K be defined by (8), and suppose that A has rank m. Then

inertia(K ) = inertia(ZTGZ ) + (m,m, 0)

Therefore, if ZTGZ is positive definite, inertia(K ) = (n,m, 0).
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FACTORING THE FULL KKT SYSTEM

Perform a triangular factorisation on the full KKT matrix
and then perform backward and forward substitution with
the triangular factors.
The most effective strategy in this case is to use a
symmetric indefinite factorisation.
For a general symmetric matrix K , this factorisation has
the form

PTKP = LBLT

P is a permutation matrix, L is unit lower triangular, and
B is block-diagonal with either 1× 1 or 2× 2 blocks.
The symmetric permutations P are introduced for
numerical stability of the computation and, in the case of
large sparse K , for maintaining sparsity.
Computational cost is typically about half the cost of
sparse Gaussian elimination.
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SCHUR-COMPLEMENT METHOD

Assume that G is positive definite.

The first equation in (7) can be multiplied by AG−1 and
then subtract the second equation to obtain a linear
system in the vector λ∗ alone:

(AG−1AT )λ∗ = (AG−1g − h). (12)

Solve this symmetric positive definite system for λ∗ and
then recover p from the first equation in (7) by solving:

Gp = ATλ∗ − g . (13)
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SCHUR-COMPLEMENT METHOD

This approach requires to perform operations with G−1, as well
as to compute the factorisation of the m×m matrix AG−1AT .
Therefore, it is most useful when:

G is well conditioned and easy to invert (for instance,
when G is diagonal or block-diagonal); or

G−1 is known explicitly through a quasi-Newton updating
formula; or

the number of equality constraints m is small, so that the
number of back solves needed to form the matrix
AG−1AT is not too large.
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SCHUR-COMPLEMENT METHOD

An approach like the Schur-complement method can be
written to derive an explicit inverse formula for the KKT
matrix in (7).

The formula is [
G AT

A 0

]−1

=

[
C E
ET F

]
(14)

C = G−1 − G−1AT (AG−1AT )−1AG−1,

E = G−1AT (AG−1AT )−1

F = −(AG−1AT )−1

The solution can be obtained by multiplying its right-hand
side by this inverse matrix.
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NULL-SPACE METHOD

The null-space method does not require non-singularity of
G .

Has wider applicability than the Schur-complement
method.

It assumes that A has full row rank and that ZTGZ is
positive definite.

It requires knowledge of the null-space basis matrix Z .

Like the Schur-complement method, it exploits the block
structure in the KKT system to decouple it into two
smaller systems.
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NULL-SPACE METHOD

Suppose that we partition the vector p into two
components, as follows:

p = YpY + ZpZ , (15)

Z is the n × (n −m) null-space matrix

Y is any n ×m matrix such that [Y |Z ] is non-singular,
pY is an m-vector,

pZ is an (n −m)-vector.

By substituting p into the second equation of (7), and
recalling that AZ = 0, we have:

(AY )pY = −h. (16)
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NULL-SPACE METHOD

Since A has rank m and [Y |Z ] is n × n non-singular, the
product A[Y |Z ] = [AY |0] has rank m.

Therefore, AY is a non-singular m ×m matrix, and pY is
well determined by (16).

Meanwhile, we can substitute (15) into the first equation
of (7) to obtain

−GYpY − GZpZ + ATλ∗ = g

and multiply by ZT to obtain

(ZTGZ )pZ = −ZTGYpY − ZTg . (17)

This system can be solved by performing a Cholesky
factorization of the reduced-Hessian matrix ZTGZ to
determine pZ .
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NULL-SPACE METHOD

To obtain the Lagrange multiplier, multiply the first block
row in (7) by Y T to obtain the linear system

(AY )Tλ∗ = Y T (g + Gp), (18)

which can be solved for λ∗.

Example
Consider the problem (10). Choose

Y =

 2/3 −1/3
−1/3 2/3
1/3 1/3


and set Z = (−1,−1, 1)T . Note that AY = I .
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Example

Suppose we have x = (0, 0, 0)T . Then

h = Ax−b = −b, g = c+Gx = c =
[
−8 −3 −3

]T
Simple calculation shows that

pY =
[
3 0

]T
, pZ =

[
0
]
,

so that

p = x∗ − x = YpY + ZpZ =
[
2 −1 1

]T
After recovering λ∗ from (18) we have:

x∗ =
[
2 −1 1

]T
, λ∗ =

[
3 −2

]T
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OPTIMALITY CONDITIONS FOR
INEQUALITY-CONSTRAINED PROBLEMS

min
x

q(x) =
1

2
xTGx + xT c (19)

subject to aTi x = bi , i ∈ E , (20)

aTi x ≥ bi , i ∈ I. (21)

The Lagrangian function for the general inequality
constrained QP is given by:

L(x , λ) = 1

2
xTGx + xT c −

∑
i∈I∪E

λi (a
T
i x − bi ). (22)

As defined before the active set A(x∗) at a point x∗

consists of the indices of the constraints for which equality
holds at x∗:

A(x∗) = {i ∈ E ∪ I|aTi x∗ = bi}. (23)
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OPTIMALITY CONDITIONS

The KKT conditions for this problem can be stated as:
any solution x∗ of (19) satisfies the following first-order
conditions, for some Lagrange multipliers λ∗

i , i ∈ A(x∗):

Gx∗ + c −
∑

i∈A(x∗)

λ∗
i ai = 0, (24)

aTi x
∗ = bi , for all i ∈ A(x∗), (25)

aTi x
∗ ≥ bi , for all i ∈ I \ A(x∗),

(26)

λ∗
i ≥ 0, for all i ∈ I ∪ A(x∗) (27)

The first optimality conditions still holds if we replace
LICQ by other constraint qualifications, such as linearity of
the constraints (true for QPs).
Hence, in the optimality conditions for quadratic
programming, we need not assume that the active
constraints are linearly independent at the solution.
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Second-Order Conditions

Theorem

If x∗ satisfies the conditions (24)-(27) for some λ∗
i , i ∈ A(x∗),

and G is positive semi-definite, then x∗ is a global solution of
(19).

Proof:

If x is any other feasible point of (19),

aTi x = bi for all i ∈ E and

aTi x ≥ bi for all i ∈ A(x∗) ∩ I

So,

aTi (x − x∗) = 0, for all i ∈ E and

aTi (x − x∗) ≥ 0, for all i ∈ A(x∗) ∩ I
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Second-Order Conditions

Using the above expression with (24) and (27) we have,

(x − x∗)(Gx∗ + c) =
∑
i∈E

λ∗
i a

T
i (x − x∗)

+
∑

i∈A(x∗)∩I

λ∗
i a

T
i (x − x∗) ≥ 0.

(28)

By elementary manipulation (Psd of G ):

q(x) = q(x∗) + (x − x∗)T (Gx∗ + c) +
1

2
(x − x∗)TG (x − x∗)

≥ q(x∗) +
1

2
(x − x∗)TG (x − x∗)

≥ q(x∗)

Therefore q(x) ≥ q(x∗) for any feasible x , so x∗ is a
global solution.
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Degeneracy

Degeneracy is one of the following situations, which can cause
problems for the algorithms:

1 the active constraint gradients ai , i ∈ A(x∗), are linearly
dependent at the solution x∗, and/or

2 the strict complementarity condition fails to hold, that is,
there is some index i ∈ A(x∗) such that all Lagrange
multipliers satisfying (24)-(26) have λ∗

i = 0. (Such
constraints are weakly active.)
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ITERATIVE SOLUTION OF THE KKT SYSTEM

An alternative to the direct factorisation techniques
discussed is to use an iterative method to solve the KKT
system.

Iterative methods are suitable for solving very large
systems and often lend themselves well to parallelization.

The conjugate gradient (CG) method is not recommended
for solving the full system , because it can be unstable on
systems that are not positive definite.

Iterative methods can be derived from the null-space
approach by applying the conjugate gradient method to
the reduced system (17)
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Active-set methods for convex QP

Convex QP: any local solution is also global.

Active-set Methods are the most effective methods for
small- to medium-scale problems.

They have properties susch as:

efficient detection of unboundedness and infeasibility;
accurate estimate (typically) of the optimal active set.

A brute-force approach to solving the KKT systems for all
combinations of active constraints:

if the optimal active set A(x∗) ( the active set at the
optimal point x∗) was known
the solution could be found as the solution of the
equality-constrained QP problem

min
x

q(x) s.t. aTi x = bi , i ∈ A(x∗).
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Active-set method

start from a guess of the optimal active set;

if not optimal, drop one index from A(x) and add a new
index (using gradient and Lag. mult. information); repeat.

The simplex method for LP is an active-set method.

QP active-set methods may have iterates that aren’t
vertices of the feasible polytope.

Three types of active-set methods: primal, dual, and
primal-dual.

We focus on primal methods, which generate iterates that
remain feasible wrt the primal problem while steadily
decreasing the objective function q.
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Primal active-set method

Primal active-set methods find a step from one iterate to
the next by solving a quadratic subproblem in which some
of the inequality constraints, and all the equality
constraints are imposed as equalities.

This subset is referred to as the working set and is
denoted at the kth iterate xk by Wk .

An important requirement imposed on Wk , the gradients
ai of the constraints in the Wk are linearly independent,
even when the full set of active constraints at that point
has linearly dependent gradients.
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Primal active-set method

Given an iterate xk and the working set Wk , first check
whether xk minimises the quadratic q in the subspace
defined by the working set.

If not, compute a step p by solving an equality-constrained
QP subproblem in which the constraints corresponding to
the working set Wk are regarded as equalities and all other
constraints are temporarily disregarded.

To express this subproblem in terms of the step p, define

p = x − xk , gk = Gxk + c .

Substituting the above expressions into the objective
function q in (19) we get:

q(x) = q(xk + p) =
1

2
pTGp + gT

k p + ρk
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Primal active-set method

ρk = 1
2x

T
k Gxk + cT xk is independent of p.

Therefore we can drop ρk from the objective without
affecting the solution of the problem.

The QP subproblem to be solved at the kth iteration is:

min
p

=
1

2
pTGp + gT

k p (29)

subject to aTi p = 0, i ∈ Wk . (30)

Denote the solution of the above subproblem as pk .

Note that for each i ∈ Wk , the value of aTi x does not
change as we move along pk

aTi (xk + αpK ) = aTi xk = bi for all α
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Primal active-set method

Since the constraints in Wk were satisfied at xk , they are
also satisfied at xk + αpk , for any value of α.

Since G is positive definite, the solution of (29) can be
computed by any of the techniques described.

Suppose for a moment that the optimal pk form (29) is
non-zero, we need to decide how far to move along this
direction.

If xk + pk is feasible with respect to all the constraints, we
set xk+1 = xk + pk .

Otherwise, set
xk+1 = xk + αkpk .

Where the step-length parameter αk is chosen to be the
largest value in the range [0, 1] for which all constraints
are satisfied.
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Primal active-set method

An explicit definition of αk can be derived by considering
what happens to the constraints i /∈ Wk .

As the constraints i ∈ Wk will certainly be satisfied
regardless of the choice of αk .

If aTi pk ≥ 0 for some i /∈ Wk , then for all αk ≥ 0 we have

aTi (xk + αkpk) ≥ aTi xk ≥ bi .

Hence, constraint i will be satisfied for all non-negative
choices of the step-length parameter.

Whenever aTi pk < 0 for some i /∈ Wk , however we have

aTi (xk + αkpk) ≥ bi iff αk ≤
bi − aTi xk

aTi pk
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Primal active-set method

To maximise the decrease in q, αk has to be as large as
possible in [0, 1], subject to retaining feasibility.

So we obtain the following expression:

αk
def
= min

(
1, min

i /∈Wk , aTi pk<0

bi − aTi xk

aTi pk

)
. (31)

The constraints with corresponding indices i for which the
minimum in (31) is achieved are called the blocking
constraints.

If αK = 1 and no new constraints are active at xk + αkpk ,
then there are no blocking constraints on this iteration.s

Note that it is quite possible for αk to be zero, because we
could have aTi pk < 0 for some constraint i that is active
at xk but not a member of the current working set Wk .
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Primal active-set method

If αk < 1, that is, the step along pk was blocked by some
constraint not in Wk , a new working set Wk+1 is
constructed by adding one of the blocking constraints to
Wk .
Continue to iterate in this manner, adding constraints to
the working set until we reach a point x̂ that minimises
the quadratic objective function over its current working
set Ŵ.
It is easy to recognise such a point because the
subproblem (29), has solution p = 0.
Since p = 0 satisfies the first order optimality conditions
for (29), we have:∑

i∈Ŵ

ai λ̂i = g = Gx̂ + c , (32)

for some Lagrange multipliers λ̂i , i ∈ Ŵ.
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Primal active-set method

x̂ and λ̂ satisfy the first KKT condition (24), if we define
the multipliers corresponding to the inequality constraints
that are not in the working set to be zero.

Because of the control imposed on the step length, x̂ is
also feasible with respect to all the constraints, so the
second and third KKT conditions (25) and (26) are
satisfied at this point.

Now we examine the signs of the multipliers corresponding
to the inequality constraints in the working set, that is, the
indices i ∈ Ŵ ∩ I.
If these multipliers are all non-negative, the fourth KKT
condition (27) is also satisfied.

So we conclude that x̂ is a KKT point for the original
problem.
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Primal active-set method

Since G is positive semi-definite, we have from the
previous theorem x̂ is a global solution of the main
problem.

x̂ is a strict local minimiser and the unique global solution
if G is positive definite.

If, one or more of the multipliers λ̂j , j ∈ Ŵ ∩ I, is
negative, the condition (27) is not satisfied and the
objective function q(.) may be decreased by dropping one
of these constraints.

Thus, we remove an index j corresponding to one of the
negative multipliers from the working set and solve a new
subproblem for the new step.

This strategy produces a direction p at the next iteration
that is feasible with respect to the dropped constraint.
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Primal active-set method

Theorem

Suppose that the point x̂ satisfies first-order conditions for the
equality-constrained subproblem with working set Ŵ; that is,
equation (32) is satisfied along with aTi x̂ = bi for all i ∈ Ŵ.
Suppose, too, that the constraint gradients ai , i ∈ Ŵ are
linearly independent and that there is an index j ∈ Ŵ such that
λ̂j < 0. Let p be the solution obtained by dropping the
constraint j and solving the following subproblem:

min
p

1

2
pTGp + (Gx̂ + c)Tp, (33)

subject to aTi p = 0, for all i ∈ Ŵ with i ̸= j . (34)

Then p is a feasible direction for constraint j ,that is, aTj p ≥ 0.
Moreover,if p satisfies second-order sufficient conditions for
(33), then we have that aTj p > 0, and that p is a descent
direction for q(.).
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Primal active-set method

While any index j for which λ̂j < 0 usually will yield a
direction p along which the algorithm can make progress,
the most negative multiplier is often chosen in practice
(and in the algorithm specified below).

This choice is motivated by the sensitivity analysis, which
shows that the rate of decrease in the objective function
when one constraint is removed is proportional to the
magnitude of the Lagrange multiplier for that constraint.

As in linear programming, however, the step along the
resulting direction may be short (as when it is blocked by
a new constraint), so the amount of decrease in q is not
guaranteed to be greater than for other possible choices of
j .
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Primal active-set method

The following theorem shows that whenever pk is obtained
from (29) is nonzero and satisfies second-order sufficient
optimality conditions for the current working set, it is a
direction of strict descent for q(.).

Theorem

Suppose that the solution pk of (29) is nonzero and satisfies
the second-order sufficient conditions for optimality for that
problem. Then the function q(.) is strictly decreasing along the
direction pk .

When G is positive definite—the strictly convex case—the
second-order sufficient conditions are satisfied for all
feasible subproblems.

From the result above that we obtain a strict decrease in
q(.) whenever pk ̸= 0.
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Primal active-set method
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Primal active-set method

Various techniques can be used to determine an initial
feasible point.
One such is to use the “Phase I” approach for linear
programming.
No significant modifications are needed to generalise this
method from linear programming to quadratic
programming.
A variant here that allows the user to supply an initial
estimate x̃ of the vector x : Given x̃ , define the following
feasibility linear program:

min
(x ,z)

eT z

subject to aTi x + γizi = bi , i ∈ E ,
aTi x + γizi ≥ bi , i ∈ I,

z ≥ 0,
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Primal active-set method

e = (1, 1, ..., 1)T , γi = −sign(aTi x̃ − bi ) for i ∈ E , and
γi = 1 for i ∈ I.
Afeasible initial point for this problem is then

x = x̃ , zi = |aTi x̃−bi | (i ∈ E), zi = max(bi−aTi x̃ , 0) (i ∈ I).

It can be verified that if x̃ is feasible for the original
problem , then (x̃ , 0) is optimal for the feasibility
subproblem.

In general, if the original problem has feasible points, then
the optimal objective value in the subproblem is zero, and
any solution of the subproblem yields a feasible point for
the original problem.

The initial working set W0 for the algorithm can be found
by taking a linearly independent subset of the active
constraints at the solution of the feasibility problem.
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Example

Consider the following simple 2-dimensional problem:

min
x

q(x) = (x1 − 1)2 + (x2 − 2.5)2 (35)

subject to x1 − 2x2 + 2 ≥ 0, (36)

−x1 − 2x2 + 6 ≥ 0, (37)

−x1 + 2x2 + 2 ≥ 0, (38)

x1 ≥ 0, (39)

x2 ≥ 0. (40)

The constraints are referred by the indices from 1 through
5.

It is easy to determine a initial feasible point; x0 = (2, 0)T .

Constraints 3 and 5 are active at this point, and we set
W0 = {3, 5}.
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Example

Note that the choices W0 = {5} or W0 = {3} or even
W = ϕ are all valid; each choice would lead the algorithm
to perform somewhat differently.

Figure: Iterates of the active-set method
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Example

Since x0 lies on a vertex of the feasible region, it is
obviously a minimiser of the objective function q with
respect to the working set W0; that is, the solution of the
subproblem with k = 0 is p = 0.

Now (32) can be used to find the multipliers λ̂3 and λ̂5

associated with the active constraints.

Substitution of data from the subproblem into (32) yields[
−1
2

]
λ̂3 +

[
0
1

]
λ̂5 =

[
2
−5

]
which has the solution (λ̂3, λ̂5) = (−2,−1).
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Example

Now remove the constraint 3 from the working set, as it
has the most negative multiplier and set W1 = {5}.
Begin iteration 1 by finding the solution of the subproblem
for k = 1, which is p1 = (−1, 0)T .

The step-formula (31) yields α1 = 1, and the new iterate
is x2 = (1, 0)T .

There are no blocking constraints, so W2 = W1 = {5}.
In-turn start the iteration 2 that the solution of the
subproblem is p2 = 0.

From (32), deduce that the Lagrange multiplier for the
lone working constraint λ̃5 = −5.

So drop 5 from the working set to get W3 = ϕ.
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Example

Iteration 3 starts by solving the unconstrained problem, to
obtain the solution p3 = (0, 2.5)T .
Formula (31) yields a step length of α3 = 0.6 and the new
iterate x4 = (1, 1.5)T .
There is a single blocking constraint (constraint 1), so we
obtain W4 = {1}.
The solution of the subproblem for k = 4 is then
p4 = (0.4, 0.2)T , and the new step length is 1.
There are no blocking constraints on this step.
So the next working set is unchanged: W5 = {1}.
The new iterate is x5 = (1.4, 1.7)T

Finally, we solve the subproblem for k = 5 to obtain a
solution p5 = 0.
The formula (32) yields a multiplierλ̂1 = 0.8, so we have
found the solution.
We set x∗ = (1.4, 1.7)T and terminate.
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