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1 TANGENT CONE & LINEARISED FEASIBLE DI-

RECTIONS

1.1 TANGENT CONE

• We determined whether or not it was possible to take a feasible descent step away from
a given feasible point x;

• by examining the first derivatives of f and;

• the constraint functions ci.

• The first-order Taylor series expansion of these functions about x was used to form an
approximate problem in which both objective and constraints are linear.

• Makes sense if the linearised approximation captures the essential geometric features of
the feasible set near the point x in question.

• Assumptions about the nature of the constraints ci that are active at x are needed to be
made to ensure that the linearised approximation is similar to the feasible set, near x.

• Given a feasible point x, {zk} is called a feasible sequence approaching x, if zk ∈ Ω for
all k, sufficiently large and zk → x.

Definition (Cone)
A cone is a set F with the property that for all x ∈ F we have

x ∈ F =⇒ αx ∈ F , for all α > 0.

Example
The set F ⊂ R2 defined by

{(x1, x2)
T |x1 > 0, x2 ≥ 0}

is a cone in R2.

Definition
The vector d is said to be a tangent (or tangent vector) to Ω at a point x if there are a

feasible sequence {zk} approaching x and a sequence of positive scalars {tk} with tk → 0 such
that

lim
k→∞

zk − x

tk
= d. (1)

The set of all tangents to Ω at x∗ is called the tangent cone and is denoted by TΩ(x
∗).
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Figure 1: Constraint normal, objective gradient, and feasible sequence

1.2 Linearised Feasible Direction

Definition (Linearised Feasible Direction)
Given a feasible point x and the active constraint set A (x), the set of linearised feasible

directions F (x) is

F (x) =

{
d|

dT∇ci(x) = 0, for all i ∈ E

dT∇ci(x) ≥ 0, for all i ∈ A (x) ∩ I

}
(2)

• F (x) is also a cone.

• The definition of tangent cone does not explicitly depend on the constraints ci it depends
on the geometry of Ω.

• The linearised feasible direction set does, however, depend on the definition of the con-
straint functions ci , i ∈ E ∪ I .

1.3 Examples

Tangent Cone and Feasible Direction for One Equality Constraint

• Consider the problem with one equality constraint.

• The objective function f(x) = x1 + x2, E = {1}, I = ϕ

• c1(x) = x2
1 + x2

2 − 2

• The feasible set for this problem is the circle of radius
√
2 centered at the origin.

• Consider the non-optimal point x = (−
√
2, 0)T .
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• The figure also shows a feasible sequence approaching x.

zk =

[
−
√
2− 1/k2

−1/k

]

• Choose tk = ||zk − x||, to get d = (0,−1)T is a tangent.

• f increases as we move along zk, i.e. f(zk+1) > f(zk) for all k = 2, 3, . . ..

• f(zk) < f(x) for k = 2, 3, . . ., so x cannot be a minimiser.

• Consider the non-optimal point x = (
√
2, 0)T .

• The figure also shows a feasible sequence approaching x.

zk =

[
−
√
2− 1/k2

−1/k

]

• Choose tk = ||zk − x||, to get d = (0,−1)T is a tangent.

• f increases as we move along zk, i.e. f(zk+1) > f(zk) for all k = 2, 3, . . ..

• f(zk) < f(x) for k = 2, 3, . . ., so x cannot be a minimiser.

• Another feasible sequence is one that approaches x = (−
√
2, 0)T from the opposite direc-

tion.

•

zk =

[
−
√

2− 1/k2

1/k

]
• f decreases along this sequence.

• The tangents corresponding to this sequence are d = (0, α)T .

• In summary, the tangent cone at x = (−
√
2, 0)T is {(0, d2)T |d2 ∈ R}.

• For the set of linearised feasible directions F (x), d = (d1, d2)
T ∈ F (x) if

0 = ∇c1(x)
Td =

[
2x1

2x2

]T [
d1
d2

]
= −2

√
2d1

• F (x) = {(0, d2)T |d2 ∈ R}.

• In this case TΩ(x) = F (x).

• Suppose that the feasible set is defined instead by the formula

Ω = {x|c1(x) = 0}, where c1(x) = (x2
1 + x2

2 − 2)2 = 0

• Ω is geometrically the same, but with a different algebraic specification.

• Then d belongs to the linearised feasible set if:

0 = ∇c1(x)
Td =

[
4(x2

1 + x2
2 − 2)x1

4(x2
1 + x2

2 − 2)x2

]T [
d1
d2

]
=

[
0
0

]T [
d1
d2

]
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Figure 2: Feasible sequences converging to a particular feasible point for the region defined by
x2
1 + x2

2 ≤ 2

• which is true for all (d1, d2)
T .

• F (x) = R2.

• So for this algebraic specification of Ω, the tangent cone and linearised feasible sets differ.

Tangent Cone and Feasible Direction for One In-Equality Con-
straint

• The solution x = (−1,−1)T is the same as in the equality-constrained case.

• But, there is a much more extensive collection of feasible sequences that converge to any
given feasible point.

• From the point x = (−
√
2, 0)T , all the feasible sequences defined above for the equality-

constrained problem are still feasible.

• There are also infinitely many feasible sequences that converge to x, along a straight line
from the interior of the circle.

•
zk = (−

√
2, 0)T + (1/k)w,

where w is any vector whose first component is positive (w1 > 0).

• zk is feasible provided that ||zk|| ≤
√
2 i.e.

(−
√
2 + w1/k)

2 + (w2/k)
2 ≤ 2,

• Which is true when k ≥ (w2
1 + w2

2)/(2
√
2w1)

• we can also define an infinite variety of sequences that approach x along a curve from the
interior of the circle.
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• To summarize, the tangent cone to this set at (−
√
2, 0)T is {(w1, w2)

T |w1 ≥ 0}.

• For the feasibility set F (x) let us consider:

0 ≤ ∇c1(x)
Td =

[
−2x1

−2x2

]T [
d1
d2

]
= 2

√
2d1

• Hence, we obtain F (x) = TΩ(x) for this particular algebraic specification of the feasible
set.

2 Constraint Qualifications

• Constraint qualifications are conditions under which the linearised feasible set F (x) is
similar to the tangent cone TΩ(x).

• Most constraint qualifications ensure that these two sets are identical.

• These conditions ensure that the F (x), which is constructed by linearising the algebraic
description of the set Ω at x, captures the essential geometric features of the set Ω in the
vicinity of x, as represented by TΩ.

Definition (LICQ)
Given the point x and the active set A (x), we say that the linear independence constraint

qualification (LICQ) holds if the set of active constraint gradients {∇ci(x)|i ∈ A (x)} is linearly
independent.
In general, if LICQ holds, none of the active constraint gradients can be zero.

3 FIRST-ORDER OPTIMALITY CONDITIONS

Consider the constrained optimisation problem

min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E

cj(x) ≥ 0, j ∈ I
(3)

f and ci are scalar valued functions of the vector of unknowns x and E and I are set of indices.
Define the Lagrangian function for the general problem as

L (x, λ) = f(x)−
∑

i∈E∪I

λici(x). (4)

• The necessary conditions defined in the following theorem are called first-order conditions.

• They are named so owing to their association with gradients (first-derivative vectors) of
the objective and constraint functions.

• They act as a foundation for many of the algorithms.
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3.1 First-Order Necessary Conditions

Theorem
Suppose that x∗ is a local solution of the optimisation problem (3), that the functions f

and ci’s in (3) are continuously differentiable, and that the LICQ holds at x∗. Then there
is a Lagrange multiplier vector λ∗, with components λ∗

i , i ∈ E ∪ I , such that the following
conditions are satisfied at (x∗, λ∗)

∇xL (x∗, λ∗) = 0, (5)

ci(x
∗) = 0, for all i ∈ E , (6)

ci(x
∗) ≥ 0, for all i ∈ I , (7)

λ∗
i ≥ 0, for all i ∈ I , (8)

λ∗
i ci(x

∗) = 0, for all i ∈ E ∪ I . (9)

• The above stated conditions are often known as the Karush–Kuhn–Tucker conditions, or
KKT conditions for short.

• The last set of conditions comprises of conditions that are the complementarity conditions;
they imply that either constraint i is active or λ∗

i = 0, or possibly both.

• The Lagrange multipliers corresponding to inactive inequality constraints are zero.

• We can omit the terms for indices i /∈ A (x∗) and rewrite the first condition as

0 = ∇xL (x∗, λ∗) = ∇f(x∗)−
∑

i∈A (x∗)

λ∗
i∇ci(x

∗). (10)

Definition (Strict Complementarity)
Given a local solution x∗ of the optimisation problem and a vector λ∗ satisfying the KKT

conditions, we say that the strict complementarity condition holds if exactly one of λ∗
i and ci(x

∗)
is zero for each index i ∈ I . In other words, we have that λ∗

i > 0 for each i ∈ I ∪ A (x∗).

• Satisfaction of the strict complementarity property usually makes it easier for algorithms
to determine the active set A (x∗) and converge rapidly to the solution x∗.

• For a given problem and solution point x∗, there may be many vectors λ∗ for which the
KKT conditions are satisfied.

• When the LICQ holds, however, the optimal λ∗ is unique.

3.2 KKT Conditions With an Example

Consider the feasible region illustrated in Figure 3 described by the four constraints of the
ensuing optimization problem.

minx

(
x1 −

3

2

)2

+

(
x2 −

1

2

)2

s.t.


1− x1 − x2

1− x1 + x2

1 + x1 − x2

1 + x1 + x2

 ≥ 0. (11)
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Figure 3: Four constraints

3.3 FIRST-ORDER OPTIMALITY CONDITIONS

Lemma
Let x∗ be a feasible point. The following two statements are true.

1. TΩ(x
∗) ⊂ F (x∗).

2. If the LICQ condition is satisfied at x∗, TΩ(x
∗) = F (x∗).

• The above Lemma uses a constraint qualification (LICQ) to relate the tangent cone TΩ

to the set F of first-order feasible directions.

3.4 A FUNDAMENTAL NECESSARY CONDITION

Definition (Local Solution)
A local solution of the optimisation problem is a point x at which all feasible sequences

have the property that f(zk) ≥ f(x) for all k sufficiently large.

Theorem
If x∗ is a local solution of the optimization problem (3), then we have

∇f(x∗)Td ≥ 0, for all d ∈ TΩ(x
∗) (12)

• Therefore the theorem says if a sequence zk as considered above exists, then its limiting
directions must make a non-negative inner product with the gradient of the objective
function.

Proof of Theorem

• To contradict lets assume that there is a tangent d for which ∇f(x∗)Td < 0.

• Let {zk} and {tk} be the sequences satisfying definition of tangent vector for this d.
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• Then we have:

lim
k→∞

zk − x∗

tk
= d

zk = x∗ + tkd+ o(tk).

. for k sufficiently large.

• We have:

f(zk) = f(x∗) + (zk − x∗)T∇f(x∗) + o(||zk − x∗||)
= f(x∗) + tkd

T∇f(x∗) + o(tk)

• Since dT∇f(x∗) < 0, and the remainder term eventually gets dominated by the first-order
term we have

f(zk) < f(x∗) +
1

2
tkd

T∇f(x∗), for all k sufficiently large.

• This implies given an open nbhd of x∗, a k sufficiently large can be chosen such that zk
lies in this nbhd and has a lower value lower value of the objective f .

• Therefore, x∗ is not a local solution.

Is the Converse True?

• The converse of this result is not necessarily true.

• We may have ∇f(x∗)Td ≥ 0 for all d ∈ TΩ(x
∗), yet x∗ not being a local minimiser.

• Consider the problem
min x2 subject to x2 ≥ −x2

1.

• The problem is unbounded.

• Let us examine its behaviour at x∗ = (0, 0)T .

• All limiting directions d of feasible sequences must have d2 ≥ 0, so that ∇f(x∗)Td = d2 ≥
0.

• x∗ is clearly not a local minimiser.

• The point (α,−α2)T for α > 0 has a smaller function value than x∗, and can be brought
arbitrarily close to x∗ by setting α sufficiently small.

3.5 FARKAS’ LEMMA

• The most important step in proving the KKT theorem.

• This lemma considers a cone K defined as follows:

K = {By + Cw | y ≥ 0}, (13)

where B and C are matrices of dimension n×m and n× p, respectively, and y and w are
vectors of appropriate dimensions.
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Figure 4: showing various limiting directions of feasible sequences at the point (0, 0)T .

• Given g ∈ Rn, Farkas’ Lemmma states that one (and only one) of the two alternatives is
true.

1. Either g ∈ K, or else

2. there is a vector d ∈ Rn such that

gTd < 0, BTd ≥ 0, CTd = 0. (14)

• In the above figure B has three columns, C is null and n = 2.

• Note that in the second case, the vector d defines a separating hyperplane, which is a
plane in Rn that separates the vector g from the cone K.

Farkas’ Lemma
Let the cone K be defined as above. Given any vector g ∈ Rn, we have either that g ∈ K

or that there exist d ∈ Rn satisfying (14), but not both.

3.6 Proof of First-Order Necessary Conditions (KKT)

• Suppose that x∗ ∈ Rn is a feasible point at which the LICQ holds.

• The theorem claims that if x∗ is a solution for the optimisation problem, then there is a
vector λ∗ ∈ Rm that satisfies the KKT conditions.

• We first show that there are multipliers λi, i ∈ A (x∗), such that the following is satisfied:

∇f(x∗) =
∑

i∈A (x∗)

λi∇ci(x
∗)

• We have from the previous theorem

dT∇f(x∗) ≥ 0, for all tangent vectors d ∈ TΩ(x
∗).
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Figure 5: Farkas’ Lemma: Either g ∈ L (left) or there is a separating hyperplane (right).

• We also have the equivalence of F (x∗) and TΩ(x
∗), whenever LICQ holds

• But putting together the above two results we have

dT∇f(x∗) ≥ 0 for all d ∈ F (x∗).

• Consider the cone N defined by:

N = {
∑

i∈A (x∗)

λi∇ci(x
∗), λi ≥ 0 for i ∈ A (x∗) ∩ I } (15)

• Set g = ∇f(x∗).

• Now, Farkas’ Lemma implies either

∇f(x∗) =
∑

i∈A (x∗)

λi∇ci(x
∗) = A(x∗)Tλ∗, λi ≥ 0 for i ∈ A (x∗) ∩ I (16)

• or else there is a direction d such that dT∇f(x∗) < 0 and d ∈ F (x∗).

• We have as a consequence of the previously stated results, that (16) holds true.

• We now define the vector λ∗ as

λ∗
i =

{
λi, i ∈ A (x∗),

0, i ∈ I \ A (x∗),
(17)

and show that the this choice of λ∗, together with out local solution x∗, satisfies the KKT
conditions.

• The stationary point condition for the Lagrangian function follows immediately from (16)
and the definitions of Lagrangian function and the definition of λ∗ above.

• Since x∗ is feasible, the two feasibility conditions are satisfied.

• λ∗
i ≥ 0 for i ∈ A (x∗) ∩ I , while from the definition of λ∗, λ∗

i = 0 for i ∈ I \ A (x∗).
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• Hence, λ∗
i ≥ 0 for i ∈ I .

• We have for i ∈ A (x∗) ∩ I that ci(x
∗) = 0, while for i ∈ I \ A (x∗), we have λ∗

i = 0.

• Hence λ∗
i ci(x

∗) = 0, for i ∈ I .

4 SECOND-ORDER CONDITIONS

• The KKT conditions tell us how the first derivatives of f and the active constraints ci
are related to each other at a solution x∗.

• When these conditions are satisfied, any movement along any vector w ∈ F (x∗) either
increases the first-order approximation to the objective function (∇f(x∗)Tw > 0) or else
keeps this value the same (∇f(x∗)Tw = 0).

• For the directions w ∈ F (x∗) for which ∇f(x∗)Tw = 0 one cannot determine from first
derivative information alone whether a move along this direction will increase or decrease
the objective function f .

• Second derivatives play a “tiebreaking” role.

• The second derivative terms in the Taylor series expansions of f and ci are examined by
the second-order conditions.

• The approach is to see whether this extra information resolves the issue of increase or
decrease in f .

• These conditions are concerned with the curvature of the Lagrangian function in the
“undecided” directions (w ∈ F (x∗) for which ∇f(x∗)Tw = 0).

• For second derivatives stronger smoothness assumptions are needed, f and ci, i ∈ I ∪E ,
are all assumed to be twice continuously differentiable.

Definition (Critical Cone)
Given F (x∗) and some Lagrange multiplier vector λ∗ satisfying the KKT conditions, we

define the critical cone C (x∗, λ∗) as follows:

C (x∗, λ∗) = {w ∈F (x∗)|∇ci(x
∗)Tw = 0, for all

i ∈ A (x∗) ∩ I with λ∗
i > 0}

Equivalently,

w ∈ C (x∗, λ∗) ⇔
∇ci(x

∗)Tw = 0, for all i ∈ E ,

∇ci(x
∗)Tw = 0, for all i ∈ A (x∗) ∩ I with λ∗

i > 0,

∇ci(x
∗)Tw ≥ 0, for all i ∈ A (x∗) ∩ I with λ∗

i = 0.

• From the above definition, and the fact that λ∗
i = 0 for all inactive components i ∈

I \ A (x∗), it follows that

w ∈ C (x∗, λ∗) =⇒ λ∗
i∇ci(x

∗)Tw = 0, for all i ∈ E ∪ I .
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• Now from the first KKT condition and from the definition of the Lagrangian function,
we have

w ∈ C (x∗, λ∗) =⇒ wT∇f(x∗) =
∑

i∈E∪I

λ∗
iw

T∇ci(x
∗) = 0.

• Hence the critical cone contains directions from F (x∗) for which it is not clear from first
derivative information alone whether f will increase or decrease.

Theorem (Second-Order Necessary Conditions)
Suppose that x∗ is a local solution of the optimisation problem and that the LICQ condition

is satisfied. Let λ∗ be the Lagrange multiplier vector for which the KKT conditions are satisfied.
Then

wT∇2
xxL (x∗, λ∗)w ≥ 0, for all w ∈ C (x∗, λ∗). (18)

Theorem Second-Order Sufficient Conditions
Suppose that for some feasible point x∗ ∈ Rn there is a Lagrange multiplier vector λ∗ such

that the KKT conditions are satisfied. Suppose also that

wT∇2
xxL (x∗, λ∗)w > 0, for all w ∈ C (x∗, λ∗), w ̸= 0. (19)

Then x∗ is a strict local solution for the optimisation problem.

4.1 Example

• f(x) = x1 + x2, c1(x) = 2− x2
1 − x2

2

• E = ϕ, I = {1}

• The Lagrangian is
L (x, λ) = (x1 + x2)− λ1(2− x2

1 − x2
2),

• It can be verified that the KKT conditions are satisfied at x∗ = (−1,−1)T , with λ∗
1 =

1
2
.

• The Lagrangian Hessian at this point is

∇2
xxL (x∗, λ∗) =

[
2λ∗

1 0
0 2λ∗

1

]
=

[
1 0
0 1

]
• This matrix is positive definite, so it certainly satisfies the conditions of the above theorem,
x∗ = (−1,−1)T is a strict local solution.
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