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Q. 1 Consider the problem
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Show that the objective function is unbounded below, globally. As a consequence search for
a local solution with respect to the prescribed constraint by:
(a) first finding a candidate x* which satsify the first order necessary condtions (KKT);

(b) inturn show that this candidate satifies the second order sufficient condition aswell.

Q. 2 Consider the problem

1—(E1—.’L‘2

. 3 2 4 1-— T+ T2
_ = —_ >
min (xl 2) +(xe — 1) st 142y — > 0. )

1+x + 29

(a) Find value(s) of ¢ for which the point z* = (1, O)T satisfy the KKT conditions.
(b) Show that when ¢ = 1, only the first constraint is active at the solution, and find the
solution.

Q. 3 Consider the linear program:
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(a) Write down the dual problem for the LP above.
(b) Express the dual problem in part (a) as a standard LP of the form:
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Comment about the relation between the maximiser of the dual problem and the solution of
the problem (4).

Q. 4 Convert the following linear program to standard form:
H%E};X lx+dly subject to Ayx = by, Asx + Boy < b, | <y < u, (®))
where there are no explicit bounds on the optimisation vector.
Q. 5 Show that the dual of the linear program
min ¢’z subjectto Ax > b, © > 0, (6)

18
max b% \ subject to ATA < e, A >0. (7

Q. 6 Show the equivalence of the KKT conditions for the primal (6) and dual (7) problems.



