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Quasi-Newton methods (like steepest descent), require only
the gradient of the objective function to be supplied at each
iterate.

By measuring the changes in gradients, they construct a
model of the objective function that is good enough to
produce super-linear convergence.

The improvement over steepest descent is dramatic, especially
on difficult problems.

Moreover, since second derivatives are not required (unlike
Newton’s), quasi-Newton methods are sometimes more
efficient than Newton’s method.

Today, optimization software libraries contain a variety of
quasi-Newton algorithms for solving unconstrained,
constrained, and large-scale optimization problems.
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BFGS method, named for its discoverers Broyden, Fletcher,
Goldfarb, and Shanno.

Consider the following quadratic model of the objective
function at the current iterate xk :

mk(p) = fk +∇f Tk p +
1

2
pTBkp. (1)

Bk is a n × n symmetric positive definite matrix that will be
revised or updated at every iteration.

As the model is first-order accurate the function value fk and
the gradient ∇fk , both match at p = 0.

The minimiser of this model is

pk = −B−1
k ∇fk , (2)



4/13

Quasi-Newton Methods

Lists in Beamer

THE BFGS METHOD

pk is used as the search direction, and the new iterate is

xk+1 = xk + αkpk (3)

where the step length αk is chosen to satisfy the Wolfe
conditions.

Instead of computing Bk afresh at every iteration, Davidon
proposed to update it in a simple manner to account for the
curvature measured during the (most recent) previous step.

Suppose that we have generated a new iterate xk+1 and wish
to construct a new quadratic model, of the form

mk+1(p) = fk+1 +∇f Tk+1p +
1

2
pTBk+1p. (4)

What requirements should we impose on Bk+1, based on the
knowledge gained during the latest step?
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One reasonable requirement is that the gradient of mk+1

should match the gradient of the objective function f at the
latest two iterates xk and xk+1, i.e.

∇mk+1(0) = ∇fk+1 (condition at the second point is satisfied)

The first condition can be written mathematically as

∇mk+1(−αkpk) = ∇fk+1 − αkBk+1pk = ∇fk

By rearranging we get

Bk+1αkpk = ∇fk+1 −∇fk (5)
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Introduce the notations

sk = xk+1 − xk = αkpk

yk = ∇fk+1 −∇fk

With the above notation (5) becomes

Bk+1sk = yk (6)

which is called the secant equation.

Given the displacements sk and the change of gradients yk ,the
secant equation requires that the symmetric positive definite
matrix Bk+1 map sk into yk .
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This will be possible only if sk and yk satisfy the curvature
condition

sTk yk > 0. (7)

To get the above condition pre-multiply (6) with sTk .

When f is strongly convex,the inequality (7) will be satisfied
for any two points xk and xk+1.

However, this condition will not always hold automatically for
non-convex functions.

The curvature condition (7) has to explicitly enforced, by
imposing restrictions on the line search procedure that
chooses the step length α, in such cases.
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Consider the second Wolfe condition:

∇f Tk+1pk ≥ c2∇f Tk pk

=⇒ ∇f Tk+1sk ≥ c2∇f Tk sk

=⇒ yTk sk ≥ (c2 − 1)αk∇f Tk pk

(8)

c2 < 1 and pk is a descent direction the term on the right is
positive, and the curvature condition (7) holds.

When the curvature condition is satisfied, the secant equation
(6) always has a solution Bk+1.

In fact, it admits an infinite number of solutions, since the
n(n+ 1)/2 degrees of freedom in a symmetric positive definite
matrix exceed the n conditions imposed by the secant
equation.
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Definition

A minor of B of order k is principal if it is obtained by deleting
n − k rows and n − k columns columns with the same numbers.
The leading principal minor of B of order k is the minor of order k
obtained by deleting the last n − k rows and columns. We write
Dk for the leading principal minor of order k

Theorem

Let B be a symmetric n × n matrix. Then we have:
B is positive definite iff Dk > 0 for all leading principal minors.

The requirement of positive definiteness imposes n additional
inequalities —all leading principal minors must be
positive—but these conditions do not absorb the remaining
degrees of freedom.
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To determine Bk+1 uniquely, we impose the additional
condition that among all symmetric matrices satisfying the
secant equation, Bk+1 is, in some sense, closest to the current
matrix Bk .

minB ||B − Bk ||
subject to B = BT , Bsk = yk

(9)

where sk and yk satisfy the curvature condition (7) and Bk is
symmetric and positive definite.

BFGS updating can be derived by making a simple change in
the argument.

Instead of imposing conditions on the Hessian approximations
Bk , we impose similar conditions on their inverses Hk
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The updated approximation Hk+1 must be symmetric and
positive definite, and must satisfy the secant equation (6),
now written as

Hk+1yk = sk

The condition of closeness to Hk is now specified by the
following analogue

minH ||H − Hk ||
subject to H = HT , Hyk = sk

(10)

The norm is a weighted Frobenius norm given by:

||A||W = ||W 1/2AW 1/2||F

where ||.||F is defined by ||C ||2F =
∑n

i=1

∑n
i=1 c

2
ij
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The weight matrix W is any matrix satisfying Wsk = yk .
The unique solution Hk+1 is given by

BFGS Hk+1 = (I−ρksKy
T
k )Hk(I−ρkyks

T
k )+ρksks

T
k (11)

where ρk = 1
yT
k sk

Just one issue has to be resolved before we can define a
complete BFGS algorithm:
How should we choose the initial approximation H0 ?
Unfortunately, there is no magic formula that works well in all
cases.
We can use specific information about the problem, for
instance by setting it to the inverse of an approximate Hessian
calculated by finite differences at x0.
Worst case, we can simply set it to be the identity matrix, or
a multiple of the identity matrix, where the multiple is chosen
to reflect the scaling of the variables.
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