
1/29

Large-Scale Unconstrained Optimization

Large-Scale Unconstrained Optimization

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

March 13, 2024

2/29

Large-Scale Unconstrained Optimization

Lists in Beamer

Introduction

Many applications give rise to unconstrained optimization
problems with thousands or millions of variables.

Problems of this size can be solved efficiently only if the
storage and computational costs of the optimization algorithm
can be kept at a tolerable level.

A diverse collection of large-scale optimization methods has
been developed to achieve this goal, each being particularly
effective for certain problem types.

Some of these methods are straightforward adaptations of the
methods described until now.

Other approaches are modifications of these basic methods
that allow approximate steps to be calculated at lower cost in
computation and storage.

3/29

Large-Scale Unconstrained Optimization

Lists in Beamer

Introduction

The non-linear conjugate gradient methods of can be applied
to large problems without modification, owing to its minimal
storage demands and its reliance on only first-order derivative
information.
The Newton method in both line search and trust-region
algorithms require matrix factorizations of the Hessian
matrices.
High quality software implementations are available, which are
based on factorizations that can be carried out using
elimination techniques.
Newton methods are plagued with issues related to
computational cost and memory requirements of these
factorization methods.
If the Hessian matrix can be formed explicitly, with the above
problems sorted they constitute an effective approach for
solving such problems.

4/29

Large-Scale Unconstrained Optimization

Lists in Beamer

Introduction

Often, however, the cost of factoring the Hessian is
prohibitive, and it is preferable to compute approximations to
the Newton step using iterative linear algebra techniques.

Inexact Newton methods that use these techniques, in both
line search and trust-region frameworks have attractive global
convergence properties and may be super-linearly convergent
for suitable choices of parameters.

There are variants of the quasi-Newton approach, which use
Hessian approximations that can be stored compactly by using
just a few vectors of length n.

These methods are fairly robust, inexpensive, and easy to
implement, but they do not converge rapidly.

5/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

Inexact Newton Methods

The basic Newton step pNk is obtained by solving the
symmetric n × n linear system

∇2fkp
N
k = −∇fk . (1)

pNk can be obtained by solving the above equation (1)
approximately, via inexpensive iterative solvers.

For example the conjugate gradient (CG) method can be
employed to get pNk .

Both line search and trust region approaches can be derived
based on this approximation, which falls in the general family
of inexact Newton methods.

In addition, we can implement these methods in a
Hessian-free manner, so that the Hessian ∇2fk need not be
calculated or stored explicitly at all.

6/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LOCAL CONVERGENCE OF INEXACT NEWTON
METHODS

Consider the residual for the equation (1) as:

rk = ∇2fkpk +∇fk (2)

where pk is the inexact Newton step.

The CG iterations are terminated when

||rk || ≤ ηk ||∇fk ||, (3)

where the sequence {ηk} (with 0 < ηk < 1 for all k) is called
the forcing sequence.

7/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LOCAL CONVERGENCE OF INEXACT NEWTON
METHODS

Theorem

Suppose that ∇2f (x) exists and is continuous in a neighbourhood
of a minimizer x∗, with ∇2f (x∗) is positive definite. Consider the
iteration xk+1 = xk + pk where pk satisfies (3), and assume that
ηk ≤ η for some constant η ∈ [0, 1). Then, if the starting point x0
is sufficiently near x∗, the sequence {xk} converges to x∗ and
satisfies

||∇2f (x∗)(xk+1 − x∗)|| ≤ η̂||∇2f (x∗)(xk − x∗)||, (4)

for some constant η̂ with η < η̂ < 1.

8/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LINE SEARCH NEWTON–CG METHOD

In the line search Newton–CG method, also known as the
truncated Newton method, the search direction is computed
by applying the CG method to the Newton equations:

∇2fkp
N
k = −∇fk ;

and attempt to satisfy a termination test of the form

||rk || ≤ ηk ||∇fk ||,

The CG method is designed to solve positive definite systems.

However, the Hessian ∇2fk may have negative eigenvalues
when xk is not close to a solution.

The CG iteration is terminated as soon as a direction of
negative curvature is generated.

9/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LINE SEARCH NEWTON–CG METHOD

This adaptation of the CG method produces a search direction
pk that is a descent direction.

Moreover, the adaptation guarantees that the fast
convergence rate of the pure Newton method is preserved,
provided that the step length αk = 1 is used whenever it
satisfies the acceptance criteria.

For purposes of this algorithm rewrite the linear system (1) in
the form

Bkp = −∇fk (5)

where Bk represents ∇2fk .

For the inner CG iteration, denote the search direction by dj
and the sequence of iterates that it generates by zj .

10/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LINE SEARCH NEWTON–CG METHOD

When Bk is positive definite, the inner iteration sequence {zj}
will converge to the Newton step pNk that solves (5).

At each major iteration, a tolerance εk that specifies the
required accuracy of the computed solution, is prescribed

For concreteness the forcing sequence is chosen to be
ηk = min(0.5,

√
||∇fk ||) to obtain a super-linear convergence

rate (one may choose differently as well).

11/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

Line Search Newton–CG
Algorithm

Given initial point x0;
for k = 0, 1, 2, . . .

Define tolerance ε = min(0.5,
√

||∇fk ||)||∇fk ||;
Set z0 = 0, r0 = ∇fk , d0 = −r0 = −∇fk ;
for j = 0, 1, 2, . . .

if dT
j Bkdj ≤ 0
if j = 0

return pk = −∇fk ;
else

return pk = zj ;

set αj = rTj rj/d
T
j Bkdj ;

Set zj+1 = zj + αjdj ;
Set rj+1 = rj + αjBkdj ;
if ||rj+1|| < εk

return pk = zj+1;

Set βj+1 = rTj+1rj+1/r
T
j rj ;

Set dj+1 = −rj+1 + βj+1dj ;
end (for)
Set xk+1 = xk + αkpk , where αk satisfies the Wolfe, Goldstein, or

Armijo backtracking conditions (using αk = 1 if possible);
end

12/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LINE SEARCH NEWTON–CG METHOD

The main differences between the inner loop of the above
algorithm and the original CG are that the specific starting
point z0 = 0 is used;

and the use of a positive tolerance εk allows the CG iterations
to terminate at an inexact solution;

and the negative curvature test dT
j Bkdj ≤ 0 ensures that pk is

a descent direction for f at xk .

If negative curvature is detected on the first inner iteration
j = 0, the returned direction pk = −∇fk is both a descent
direction and a direction of non-positive curvature for f at xk .

13/29

Large-Scale Unconstrained Optimization

INEXACT NEWTON METHODS

LINE SEARCH NEWTON–CG METHOD

When the user cannot easily supply code to calculate second
derivatives, or where the Hessian requires too much storage
automatic differentiation and finite differencing techniques
can be used to calculate these Hessian–vector products.

Methods of this type are known as Hessian-free Newton
methods.

In the finite-differencing technique, we use the approximation

∇2fkd ≈ ∇f (xk + hd)−∇f (xk)

h
, (6)

for some small differencing interval h.

It is easy to prove that the accuracy of this approximation is
O(h);

The price we pay for bypassing the computation of the
Hessian is one new gradient evaluation per CG iteration.

14/29

Large-Scale Unconstrained Optimization

TRUST-REGION NEWTON–CG METHOD

TRUST-REGION NEWTON–CG METHOD

We discussed approache(s) for finding an approximate solution
of the trust-region subproblem that produce improvements on
the Cauchy point.

We will define a modified CG algorithm for solving the
sub-problem with these properties.

Consider the trust-region sub-problem:

min
p∈Rn

mk(p) = fk + (∇fk)
Tp +

1

2
pTBkp s.t. ||p|| ≤ ∆k (7)

where Bk = ∇2fk .

To specify the algorithm by Steihaug, we use dj to denote the
search directions of this modified CG iteration and zj to
denote the sequence of iterates that it generates.

15/29

Large-Scale Unconstrained Optimization

TRUST-REGION NEWTON–CG METHOD

CG–Steihaug
Algorithm

Given tolerance εk > 0;
Set z0 = 0, r0 = ∇fk , d0 = −r0 = −∇fk ;
if ||r0|| < εk

return pk = z0 = 0;
for j = 0, 1, 2, . . .

if dT
j Bkdj ≤ 0

Find τ such that pk = zj + τdj minimizes mk (pk), and
satisfies ||pk || ≤ ∆k ;

return pk ;
set αj = rTj rj/d

T
j Bkdj ;

Set zj+1 = zj + αjdj ;
if ||zj+1|| ≥ ∆k

Find τ ≥ 0 such that pk = zj + τdj satisfies ||pk || = ∆k ;
return pk ;

Set rj+1 = rj + αjBkdj ;
if ||rj+1|| < εk

return pk = zj+1;

Set βj+1 = rTj+1rj+1/r
T
j rj ;

Set dj+1 = −rj+1 + βj+1dj ;
end (for)

16/29

Large-Scale Unconstrained Optimization

TRUST-REGION NEWTON–CG METHOD

CG–Steihaug

The first if statement inside the loop stops the method if its
current search direction dj is a direction of non-positive
curvature along Bk ,

while the second if statement inside the loop causes
termination if zj+1 violates the trust-region bound.

In both cases, the method returns the step pk obtained by
intersecting the current search direction with the trust-region
boundary.

The choice of the tolerance εk at each call to the algorithm is
important in keeping the overall cost of the trust-region
Newton–CG method low.

Near a well-behaved solution x∗, the trust-region bound
becomes inactive, and the method reduces to the inexact
Newton method.

17/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

In a separable unconstrained optimization problem, the
objective function can be decomposed into a sum of simpler
functions that can be optimized independently.

For example for

f (x) = f1(x1, x3) + f2(x2, x4, x6) + f3(x5)

one can find the optimal value of x by minimizing each
function fi , i = 1, 2, 3, independently,

since no variable appears in more than one function.

The cost of performing m lower-dimensional optimizations is
much less in general than the cost of optimizing an
n-dimensional function.

18/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

In many large problems the objective function f : Rn → R is
not separable, but it can still be written as the sum of simpler
functions, known as element functions.

Each element function has the property that it is unaffected
when we move along a large number of linearly independent
directions.

If this property holds, we say that f is partially separable.

All functions whose Hessians are sparse are partially
separable,but so are many functions whose Hessian is not
sparse.

Partial separability allows for economical problem
representation, efficient automatic differentiation, and
effective quasi-Newton updating.

19/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

The simplest form of partial separability arises when the
objective function can be written as

f (x) =
ne∑
i=1

fi (x) (8)

where each of the element functions fi depends on only a few
components of x .

the gradients ∇fi and Hessians ∇2fi of each element function
contain just a few non-zeros.

By differentiating (8) we have

∇f (x) =
ne∑
i

∇fi (x) ∇2f (x) =
ne∑
i

∇2fi (x)

20/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

A natural question that arises is whether it is more effective to
maintain quasi-Newton approximations to each of the element
Hessians ∇2fi (x) separately, rather than approximating the
entire Hessian ∇2f (x).

To answer the above question let us consider the following
example. Consider the objective function:

f (x) = (x1 − x23)
2 + (x2 − x24)

2 + (x3 − x22)
2 + (x4 − x21)

2

= f1(x) + f2(x) + f3(x) + f4(x).
(9)

The Hessians of the element functions fi are 4× 4 sparse,
singular matrices with 4 non-zero entries.

21/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

Consider the element function f1; all other element function
have exactly the same form.

Even though f1 is formally a function of all components of x ,
it depends only on x1 and x3, which we call the element
variables for f1.

Assemble the element variables into a vector, say x[1], that is,

x[1] =

[
x1
x3

]

note that

x[1] = U1x with U1 =

[
1 0 0 0
0 0 1 0

]

22/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

Define the function ϕ1 by:

ϕ1(z1, z2) = (z1 − z22)
2,

then one can write the following

f1(x) = ϕ1(U1x).

By applying the chain rule to this representation, we obtain

∇f1(x) = UT
1 ∇ϕ1(U1x), ∇2f1(x) = UT

1 ∇2ϕ1(U1x)U1

23/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

Therefore we have

∇2ϕ1(U1x) =

[
2 −4x3

−4x3 12x23 − 4x1

]
, ∇2f1(x) =


2 0 −4x3 0
0 0 0 0

−4x3 0 12x23 − 4x1 0
0 0 0 0



The matrix U1, known as a compactifying matrix, allows us
tomap the derivative information for the low-dimensional
function ϕ1 into the derivative information for the element
function f1.

The key idea: Instead of maintaining a quasi-Newton
approximation to ∇2f1, maintain a 2× 2 quasi-Newton
approximation B[1] of ∇2ϕ1 and use the chain rule relation to
transform it into a quasi-Newton approximation to ∇2f1.

24/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

To update B[1] after a typical step from x to x+, record the
information and use BFGS or SR1 updating to obtain the new
approximation B+

[1].

s[1] = x+[1] − x[1], y[1] = ∇ϕ1(x
+
[1])−∇ϕ1(x[1]), (10)

We therefore update small, dense quasi-Newton
approximations with the property

B[1] ≈ ∇2ϕ1(U1x) = ∇2ϕ1(x[1]) (11)

To obtain an approximation of the element Hessian ∇2f1 we
use the transformation suggested by the chain rule that is,

∇2
1(x) ≈ UT

1 B[1]U1. (12)

25/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

This operation has the effect of mapping the elements of B[1]

to the correct positions in the full n × n Hessian
approximation.

The full objective function can now be written as

f (x) =
ne∑
i=1

ϕi (Uix) (13)

and we maintain a quasi-Newton approximation B[i] for each
of the functions ϕi .

To obtain a complete approximation to the full Hessian ∇2f ,
we simply sum the element Hessian approximations as follows:

B =
ne∑
i=1

UT
i B[i]Ui (14)

26/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

ALGORITHMS FOR PARTIALLY SEPARABLE
FUNCTIONS

We may use this approximate Hessian in a trust-region
algorithm, obtaining an approximate solution pk of the system

Bkpk = −∇fk

We need not assemble Bk explicitly but rather use the
conjugate gradient approach to solve the above system,
computing matrix–vector products of the form Bkv by
performing operations with the matrices Ui and B[i].

27/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

Usefulness

let us consider a problem of the partially separable form but
this time involving 1000 variables, not just 4.

The functions ϕi still depend on only two internal variables, so
that each Hessian approximation B[i] is a 2× 2 matrix.

After just a few iterations, we will have sampled enough
directions s[i] to make each B[i] an accurate approximation to
∇2ϕi .

Hence the full quasi-Newton approximation (14) will tend to
be a very good approximation to ∇2f (x).

By contrast, a quasi-Newton method that ignores the partially
separable structure of the objective function will attempt to
estimate the total average curvature—the sum of the
individual curvatures of the element functions—by
approximating the 1000× 1000 Hessian matrix.

28/29

Large-Scale Unconstrained Optimization

ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

When the number of variables n is large, many iterations will
be required before this quasi-Newton approximation is of good
quality.

Hence an algorithm of this type will require many more
iterations than a method based on the partially separable
approximate Hessian.

It is not always possible to use the BFGS formula to update
the partial Hessian B[i], because there is no guarantee that the

curvature conditions sT[i]y[i] > 0 will be satisfied.

Even though the full Hessian ∇2f (x) is at least positive
semi-definite at the solution x∗, some of the individual
Hessians ∇2ϕi (.) may be indefinite.

	Lists in Beamer
	INEXACT NEWTON METHODS
	TRUST-REGION NEWTON–CG METHOD
	ALGORITHMS FOR PARTIALLY SEPARABLE FUNCTIONS

