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Motivation

Manufacturing
Suppose we have m different materials; we have si units of each material
i in stock.

We can manufacture k different products; product j gives us profit pj and
uses cij amount of material i to make.

To maximize profits, we can solve the following optimization problem for
the total amount xj we should manufacture of each item j :

max
x∈Rn

k∑
j=1

pjxj

such that xj ≥ 0 ∀ j ∈ {1, 2, . . . , k}
k∑

j=1

cijxj ≤ si , ∀ i ∈ {1, 2, . . . ,m}

(1)

The first constraint ensures that we do not make negative numbers of
any product,

and the second ensures that we do not use more than our stock of each
material.
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Constrained Problem

A general formulation of these problems is:

min
x∈Rn

f (x) subject to

{
ci (x) = 0, i ∈ E

cj(x) ≥ 0, j ∈ I
(2)

f and ci are scalar valued functions of the vector of unknowns x
and E and I are set of indices.

x is a vector of variables, also called unknown or parameters;

f is the objective function, a function of x that we want to
optimise (minimise or maximise);

c is the vector function of constraints that must be satisfied
by the unknowns x .

ci , i ∈ E are the equality constraints.

ci , i ∈ I are the inequality constraints.
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Compact form of Constrained Problem

Definition

Define the feasible set Ω to be the set of points x that satisfy the
constraints; that is,

Ω = {x | ci (x) = 0, i ∈ E ; ci (x) ≥ 0, i ∈ I }, (3)

Now (2) can be rewritten more compactly as:

Constrained Problem

min
x∈Ω

f (x). (4)
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Characterizations of the Solutions

For the unconstrained optimization problems the solution
point x∗ was characterised in the following way:

Necessary conditions: Local minima of unconstrained
problems have

∇f (x∗) = 0

and,
∇2f (x∗) is positive semidefinite

Sufficient conditions: Any point x∗ at which ∇f (x∗) = 0 and
∇2f (x∗) is positive definite is a strong local minimiser of f .
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LOCAL AND GLOBAL SOLUTIONS

We have seen already that global solutions are difficult to find
even when there are no constraints.

The situation may improve when we add constraints.

The feasible set might exclude many of the local minima.

It might be comparatively easy to pick the global minimum
from those that remain.
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LOCAL AND GLOBAL SOLUTIONS

Consider the problem

min
x∈Rn

||x ||22, subject to ||x ||22 ≥ 1. (5)

Without the constraint, this is a convex quadratic problem
with unique minimiser x = 0.

When the constraint is added, any vector x with ||x || = 1
solves the problem.

There are infinitely many such vectors (hence, infinitely many
local minima) whenever n ≥ 2
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LOCAL AND GLOBAL SOLUTIONS

Addition of a constraint produces a large number of local
solutions that do not form a connected set.

Consider

min
x∈R2

(x2 + 100)2 + 0.01x21 , subject to x2 − cos x1 ≥ 0, (6)

Without the constraint, the problem has the unique solution
(−100, 0).

With the constraint there are local solutions near the points

(x1, x2) = (kπ,−1), for k = ±1,±3,±5, . . .
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LOCAL AND GLOBAL SOLUTIONS
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LOCAL AND GLOBAL SOLUTIONS

Local and global solutions are defined in a very similar fashion
as they were for the unconstrained case.

The new caveat that comes into action in the definitions for
the constrained case is the inclusion of constraints leading to
a restriction imposed via a feasible set (space).

Definition

A vector x∗ is a local solution of the constrained minimisation
problem (4) if x∗ ∈ Ω and there exists a neighbourhood N of x∗

such that
f (x∗) ≤ f (x) for all x ∈ Ω ∩ N
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LOCAL AND GLOBAL SOLUTIONS

Definition

A vector x∗ is called a strict local solution (also called a strong
local solution) if x∗ ∈ Ω and there is a neighbourhood N of x∗

such that

f (x∗) < f (x) for all x ∈ N ∩ Ω with x ̸= x∗

Definition

A point x∗ is an isolated local solution if x∗ ∈ Ω and there is a
neighbourhood N of x∗ such that x∗ is the only local minimiser in
N ∩ Ω.
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Smoothness

Smoothness of objective functions and constraints is an
important issue in characterizing solutions.

Just as in the unconstrained case, it ensures that the objective
function and the constraints all behave in a reasonably
predictable way.

Allows algorithms to make good choices for search directions.

Non-smooth functions contain “kinks” or “jumps” where the
smoothness breaks down.

The feasible region for any given constrained optimization
problem usually contains many kinks and sharp edges.
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Smoothness

Does this mean that the constraint functions that describe
these regions are non-smooth?

Figure: A feasible region with a non-smooth boundary can be
described by smooth constraints.

The answer is often no, because the non-smooth boundaries
can often be described by a collection of smooth constraint
functions.
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Smoothness

The figure above shows a diamond-shaped feasible region in
R2.

It could be described by the single non-smooth constraint

||x ||1 = |x1|+ |x2| ≤ 1.

Or, it could also be brought out as an intersection of four
smooth (in fact, linear) constraints:

x1 + x2 ≤ 1, x1 − x2 ≤ 1, −x1 + x2 ≤ 1, −x1 − x2 ≤ 1.

Each of the four constraints represents one edge of the
feasible polytope.

The constraint functions are chosen so that each one
represents a smooth piece of the boundary of Ω.
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Smoothness

In general, the constraint functions are chosen so that each
one represents a smooth piece of the boundary of Ω.

Non-smooth, unconstrained optimization problems can
sometimes be reformulated as smooth constrained problems.

Consider the unconstrained scalar problem of minimizing a
non-smooth function f (x) defined by,

f (x) = max(x2, x)

It has kinks at x = 0 and x = 1.

The solution at x∗ = 0.

A smooth, constrained formulation of this problem can be
obtained by adding an artificial variable t and writing,
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Smoothness

min t, s.t, t ≥ x , t ≥ x2.

In the examples above we expressed inequality constraints in a
slightly different way from the form ci (x) ≥ 0.

However, any collection of inequality constraints with ≥ or ≤
and nonzero right-hand-sides can be expressed in the form
ci (x) ≥ 0 by simple rearrangement of the inequality.

t − x ≥ 0, t − x2 ≥ 0.
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EXAMPLES

To introduce the basic principles behind the characterization
of solutions of constrained optimization problems, we work
through three simple examples.

Definition

At a feasible point x , the inequality constraint i ∈ I is said to be
active if ci (x) = 0 and inactive if the strict inequality ci > 0 is
satisfied.

Definition

The active set A (x) at any feasible x consists of the equality
constraint indices from E together with the indices of the
inequality constraints i for which ci (x) = 0; that is,

A (x) = E ∪ {i ∈ I |ci (x) = 0}.
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Example-1

The first example is a two-variable problem with a single equality
constraint:

min x1 + x2 x21 + x22 − 2 = 0 (7)

f (x) = x1 + x2, I = ϕ, E = {1}
c1(x) = x21 + x22 − 2

The feasible set for this problem is the circle of radius
√
2

centered at the origin.

Just the boundary of this circle, not its interior.

The solution x∗ is (−1,−1)T .
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Example-1

Figure: showing constraint and function gradients at various feasible
points.

From any other point on the circle, it is easy to find a way to
move that stays feasible (that is, remains on the circle) while
decreasing f .

From the point x = (
√
2, 0)T , any move in the clockwise

direction around the circle has the desired effect.
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A SINGLE EQUALITY CONSTRAINT

From the figure we see that at the solution x∗, the normal to
the constraint ∇c1(x

∗) is parallel to ∇f (x∗).

There is a scalar λ∗
1 (in this case λ∗

1 = −1/2) such that

∇f (x∗) = λ∗
1∇c1(x

∗). (8)

To retain feasibility with respect to the function c1(x) = 0, it
is require for any small (but nonzero) step s to satisfy that
c1(x + s) = 0; i.e:

0 = c1(x + s) ≈ c1(x) +∇c1(x)
T s = ∇c1(x)

T s.
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A SINGLE EQUALITY CONSTRAINT

The step s retains feasibility with respect to c1, to first order,
when it satisfies

∇c1(x)
T s = 0. (9)

If we want s to produce a decrease in f ;

0 > f (x + s)− f (x) ≈ ∇f (x)T s

or to first order
∇f (x)T s < 0 (10)
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A SINGLE EQUALITY CONSTRAINT

Existence of a small step s that satisfies both (9) and (10)
strongly suggests existence of a direction d where we can get
some improvement in the process of minimisation.

The size of d could be not small; we could have d ≈ s/||s|| to
ensure that the norm of d is close to 1 with the same
properties, namely

∇c1(x)
Td = 0 ∇f (x)Td < 0. (11)

If there is no direction d with the properties (11), then is it
likely that we cannot find a small step s with the properties
(9) and (10).

In this case, x∗ would appear to be a local minimiser.

The only way that a d satisfying (11) doesn’t exist is if ∇f (x)
and ∇c1(x) are parallel.
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A SINGLE EQUALITY CONSTRAINT

Or precisely if the condition

∇f (x) = λ1∇c1(x)

holds at x for some scalar λ1.

If ∇f (x) and ∇c1(x) are not parallel then we can set:

d̄ = −
(
∇f (x)− ∇c1(x)∇f (x)∇c1(x)

T

||∇c1(x)||2

)
(12)

and

d =
d̄

||d̄ ||
(13)

It can be verified that (13) satisfies (11).
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A SINGLE EQUALITY CONSTRAINT

To write the condition (11) more succinctly we introduce the
notion of the Lagrangian function.

L (x , λ1) = f (x)− λ1c1(x). (14)

The gradient w.r.t x of the Lagrangian is given by

∇xL (x , λ1) = ∇f (x)− λ1∇c1(x) (15)

With the above introduced notions the condition (11) can
now be stated as:
At the solution x∗, there is a scalar λ∗

1 such that

∇xL (x∗, λ∗
1) = 0. (16)
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A SINGLE EQUALITY CONSTRAINT

This observation suggests that we can search for solutions of
the equality-constrained problem (7) by seeking stationary
points of the Lagrangian function.

The scalar quantity λ1 is called a Lagrange multiplier for the
constraint c1(x) = 0.

Though the condition

∇f (x∗) = λ∗
1∇c1(x

∗)

appears to be necessary for an optimal solution of the
problem, it is clearly not sufficient.

The condition is satisfied at the point x = (1, 1) with λ1 =
1
2 .

But, (1, 1) is obviously not a solution.

In fact, it maximizes the function f on the circle.
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A SINGLE EQUALITY CONSTRAINT

What may seem a way out from the observation we made in
regards to the previous problem is to obtain a sufficient
condition for equality-constrained problems is:
simply by placing some restriction on the sign of λ1.

Consider the constraint

x21 + x22 − 2 = 0

by its negative i.e.
2− x21 − x22 = 0

in the example under consideration.

The solution of the problem is not affected, but the value of
λ∗
1 that satisfies the condition (16) changes from λ∗

1 = −1
2 to

λ∗
1 =

1
2 .
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A SINGLE INEQUALITY CONSTRAINT

Here we consider a small modification of Example-1.

Here the equality constraint is replaced by an inequality.

EXAMPLE-2

Consider
min x1 + x2 2− x21 − x22 ≥ 0 (17)

f (x) = x1 + x2, I = {1}, E = ϕ

c1(x) = 2− x21 − x22
The feasible region for this problem is the circle of radius

√
2

centered at the origin.

Just not the boundary of this circle, but its interior as well.
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A SINGLE INEQUALITY CONSTRAINT

The solution x∗ is still (−1,−1)T .

And the Lagrange multiplier condition holds at (−1,−1) for
the value of λ∗

1 =
1
2 .

However, this inequality-constrained problem differs from the
equality-constrained problem.

The sign of the Lagrange multiplier plays a significant role, as
we now argue.

Let us conjecture that a given feasible point x is not optimal
if we can find a small step s that both retains feasibility and
decreases the objective function f to first order.

The main difference between problems with inequality
constraint and equality constraint comes in the handling of
the feasibility condition.
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A SINGLE INEQUALITY CONSTRAINT

The step s improves the objective function, to first order, if

∇f (x)T s < 0.

s retains feasibility if

0 ≤ c1(x + s) ≈ c1(x) +∇c1(x)
T s.

That is to first order, feasibility is retained if

c1(x) +∇c1(x)
T s ≥ 0. (18)

In determining whether a step s exists that satisfies both the
conditions, we consider the following two cases,
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A SINGLE INEQUALITY CONSTRAINT

In determining whether a step s exists that satisfies both the
conditions, we consider the following two cases,

Figure: Improvement directions s from two feasible points x for the
problem at which the constraint is active and inactive, respectively
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A SINGLE INEQUALITY CONSTRAINT

CASE-1

Consider first the case in which x lies strictly inside the circle.

the strict inequality c1(x) > 0 holds.

In this case, any step vector s satisfies the condition (18),
provided only that its length is sufficiently small.

In fact, whenever ∇f (x) ̸= 0, we can obtain a step s that
satisfies both the conditions (10) and (18).

Precisely
s = −α∇f (x),

for any positive scalar α sufficiently small.

This definition does not give a step s with the required
properties when

∇f (x) = 0
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A SINGLE INEQUALITY CONSTRAINT

CASE-2

Consider now the case in which x lies on the boundary of the
circle.

So that c1(x) = 0.

The conditions (10) and (18) therefore become:

∇f (x)T s < 0, ∇c1(x)
T s ≥ 0. (19)

The first of these conditions defines an open half-space.

While the second defines a closed half-space.
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A SINGLE INEQUALITY CONSTRAINT

Figure: A direction d that satisfies both conditions (10) and (18) lies in
the intersection of a closed half-plane and an open half-plane.

It is clear from this figure that the intersection of these two
regions is empty only when ∇f (x) and ∇c1(x) point in the
same direction.
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A SINGLE INEQUALITY CONSTRAINT

That is, when

∇f (x) = λ1∇c1(x), for some λ1 ≥ 0. (20)

The sign of the multiplier is significant here.

If the Lagrange multiplier condition were satisfied with a
negative value of λ1, then ∇f (x) and ∇c1(x) would point in
opposite directions.

We see from the figure that the set of directions that satisfy
both conditions (10) and (18) would make up an entire open
half-plane.
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A SINGLE INEQUALITY CONSTRAINT

The optimality conditions for both cases I and II can again be
summarized neatly with reference to the Lagrangian function
L .

When no first-order feasible descent direction exists at some
point x∗, we have

∇xL (x∗, λ∗
1) = 0, for some λ∗

1 ≥ 0, (21)

where we also require that

λ∗
1c1(x

∗) = 0 (22)

Condition (22) is known as a complementarity condition
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A SINGLE INEQUALITY CONSTRAINT

It implies that the Lagrange multiplier λ1 can be strictly
positive only when the corresponding constraint c1 is active.

In case I, we have that c1(x
∗) > 0.

So (22) requires that
λ∗
1 = 0

And (21) reduces to
∇f (x∗) = 0

as was required by Case-I.

In case-II, (22) allows λ∗
1 to take on a non-negative value, so

(21) becomes equivalent to (20).
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TWO INEQUALITY CONSTRAINTS

Example-3

Suppose we add an extra constraint to the previous problem.

Consider

min x1 + x2 2− x21 − x22 ≥ 0, x2 ≥ 0. (23)

f (x) = x1 + x2, I = {1, 2}, E = ϕ

c1(x) = 2− x21 − x22
c2(x) = x2

The feasible region for this problem is the upper half disk of
radius

√
2 centered at the origin.
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TWO INEQUALITY CONSTRAINTS

Figure: Feasible region, illustrating the gradients of the active constraints
and objective at the solution

The solution lies at (−
√
2, 0)T .

It is a point at which both constraints are active.
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TWO INEQUALITY CONSTRAINTS

By repeating the arguments for the previous examples, we
would expect a direction d of first-order feasible descent to
satisfy

∇ci (x)
Td ≥ 0, i ∈ I = {1, 2} ∇f Td < 0 (24)

It is clear from the figure that no such direction can exist
when x = (−

√
2, 0)T .

The conditions ∇ci (x)
Td ≥ 0 i = 1, 2 are both satisfied only

if d lies in the quadrant defined by ∇c1(x) and ∇c2(x).

But it is clear that all vectors d in this quadrant satisfy
∇f Td ≥ 0.
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TWO INEQUALITY CONSTRAINTS

Let us see how the Lagrangian and its derivatives behave for
this problem and the solution point x = (−

√
2, 0)T .

First, for each additional constraint ci (x) an additional term
λic(x) is added in the Lagrangian function L

L (x , λ) = f (x)− λ1c1(x)− λ2c2(x), (25)

λ = (λ1, λ2)
T is the vector of Lagrange multipliers.

The extension of the Lagrangian condition to this case is

∇xL (x∗, λ∗) = 0, for some , λ∗ ≥ 0. (26)

λ ≥ 0 means λ∗
i ≥ 0,∀i .
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TWO INEQUALITY CONSTRAINTS

Applying the complementarity condition (22) to both
inequality constraints gives:

λ∗
1c1(x

∗) = 0 λ∗
2c2(x

∗) = 0 (27)

Now when x∗ = (−
√
2, 0)T , we have

∇f (x∗) =

[
1
1

]
, ∇c1(x

∗) =

[
2
√
2

0

]
, ∇c2(x

∗) =

[
0
1

]
(28)

We have

∇xL (x∗, λ∗) = ∇f (x∗)− λ1∇c1(x
∗)− λ2∇c2(x

∗)
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TWO INEQUALITY CONSTRAINTS

The Lagrange multiplier for x∗ can be obtained as the
solution of

∇xL (x∗, λ∗) = 0

That is λ∗ is given as:

λ∗ =

[
1/(2

√
2)

1

]

Now let us consider some other feasible points that are not
solutions of, and examine the properties of the Lagrangian
and its gradient at these points.

For x = (
√
2, 0)T , both constraints are active.
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TWO INEQUALITY CONSTRAINTS

Figure: Illustrating the gradients of the active constraints and objective at
a non-optimal point.

From this point it is easy to identify points that satisfy (24)

d = (−1, 0)T is one such vector (there are many others).
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TWO INEQUALITY CONSTRAINTS

For the value x = (
√
2, 0)T it is easy to verify that the

Lagrange multiplier condition

∇xL (x , λ) = 0

is satisfied only when λ = (−1/(2
√
2), 1)T .

The first component λ1 < 0.

So the condition (26) are not satisfied at this point.

Let us consider the point (1, 0)T .

Here only the second constraint c2 is active.

Any small step s away from this point will continue to satisfy
c1(x + s) > 0
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TWO INEQUALITY CONSTRAINTS

We need to consider only the behavior of c2 and;

f in determining whether s is indeed a feasible descent step.

Using similar arguments as made before for the previous
example we find that the direction of feasible descent d must
satisfy

∇c2(x)
Td ≥ 0, ∇f (x)Td < 0. (29)

∇f (x) =

[
1
1

]
, ∇c2(x) =

[
0
1

]

The vector d = (−1
2 ,

1
4)

T satisfies (29) and is therefore a
descent direction.
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TWO INEQUALITY CONSTRAINTS

The optimality conditions (26) and (27) fail.

We note first from (27) that since c1(x) > 0, we must have
λ1 = 0.

In trying to satisfy ∇xL (x , λ) = 0, we are left to search for a
value λ2.

∇f (x)− λ2∇c2(x) = 0.

It can be shown that no such λ2 exists.

This point fails to satisfy the optimality conditions.
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