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Motivation

Manufacturing

@ Suppose we have m different materials; we have s; units of each material
i in stock.

@ We can manufacture k different products; product j gives us profit p; and
uses ¢;j amount of material i to make.

@ To maximize profits, we can solve the following optimization problem for
the total amount x; we should manufacture of each item j:

K
pe?@;pm
such that x; > 0V j € {1,2,..., k} (1)
K
Zc,-jxj <s, Vie{l,2,...,m}
j=1

@ The first constraint ensures that we do not make negative numbers of
any product,

@ and the second ensures that we do not use more than our stock of each
material.
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Constrained Problem

A general formulation of these problems is:

0
min f(x) subject to _
x€ER" ¢(x) >0, jeJ

f and ¢; are scalar valued functions of the vector of unknowns x
and & and . are set of indices.

@ x is a vector of variables, also called unknown or parameters;

@ f is the objective function, a function of x that we want to
optimise (minimise or maximise);

@ c is the vector function of constraints that must be satisfied
by the unknowns x.

@ ¢;, i € & are the equality constraints.

@ ¢, i € F are the inequality constraints.
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Compact form of Constrained Problem

Definition
Define the feasible set {2 to be the set of points x that satisfy the
constraints; that is,

Q={x|c(x)=0, i€d; ci(x)>0, ies}, (3

Now (2) can be rewritten more compactly as:

Constrained Problem

)rpeigr; f(x). (4)
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Characterizations of the Solutions

@ For the unconstrained optimization problems the solution
point x* was characterised in the following way:
@ Necessary conditions: Local minima of unconstrained
problems have
Vi(x*)=0

and,
V2f(x*) is positive semidefinite

e Sufficient conditions: Any point x* at which Vf(x*) = 0 and
V2f(x*) is positive definite is a strong local minimiser of f.
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LOCAL AND GLOBAL SOLUTIONS

@ We have seen already that global solutions are difficult to find
even when there are no constraints.

@ The situation may improve when we add constraints.
@ The feasible set might exclude many of the local minima.

@ It might be comparatively easy to pick the global minimum
from those that remain.
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LOCAL AND GLOBAL SOLUTIONS

@ Consider the problem

min ||x||3, subject to ||x||3 > 1. (5)
x€ERN

@ Without the constraint, this is a convex quadratic problem
with unique minimiser x = Q.

@ When the constraint is added, any vector x with ||x|| =1
solves the problem.

@ There are infinitely many such vectors (hence, infinitely many
local minima) whenever n > 2
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LOCAL AND GLOBAL SOLUTIONS

@ Addition of a constraint produces a large number of local
solutions that do not form a connected set.

o Consider

mir12(x2 +100)? + 0.01x?, subject to xo — cosx; >0, (6)
x€R

@ Without the constraint, the problem has the unique solution
(—100,0).

@ With the constraint there are local solutions near the points

(x1,x2) = (km,—1), for k =+1,43,£5,...
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LOCAL AND GLOBAL SOLUTIONS

local solutions

constraint

contours of f

Figure Constrained problem with many isolated local solutions.
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LOCAL AND GLOBAL SOLUTIONS

@ Local and global solutions are defined in a very similar fashion
as they were for the unconstrained case.

@ The new caveat that comes into action in the definitions for
the constrained case is the inclusion of constraints leading to
a restriction imposed via a feasible set (space).

Definition

A vector x* is a local solution of the constrained minimisation
problem (4) if x* € Q and there exists a neighbourhood ./ of x*

such that
f(x*) <f(x) forallxe QN
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LOCAL AND GLOBAL SOLUTIONS

Definition
A vector x* is called a strict local solution (also called a strong
local solution) if x* € Q and there is a neighbourhood .4~ of x*
such that

f(x*) < f(x) forall xe A/ NQ with x # x*

Definition

A point x* is an isolated local solution if x* € Q and there is a
neighbourhood .4 of x* such that x* is the only local minimiser in
NNQ.
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Smoothness

@ Smoothness of objective functions and constraints is an
important issue in characterizing solutions.

@ Just as in the unconstrained case, it ensures that the objective
function and the constraints all behave in a reasonably
predictable way.

@ Allows algorithms to make good choices for search directions.

@ Non-smooth functions contain “kinks" or “jumps” where the
smoothness breaks down.

@ The feasible region for any given constrained optimization
problem usually contains many kinks and sharp edges.
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Smoothness

@ Does this mean that the constraint functions that describe
these regions are non-smooth?

Figure: A feasible region with a non-smooth boundary can be
described by smooth constraints.

@ The answer is often no, because the non-smooth boundaries
can often be described by a collection of smooth constraint
functions.
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Smoothness

@ The figure above shows a diamond-shaped feasible region in
R2.

@ It could be described by the single non-smooth constraint

[Ix[[1 = Pal + el < 1.

@ Or, it could also be brought out as an intersection of four
smooth (in fact, linear) constraints:

xit+x <1l xx—-—x<1 -x+xx<1, —x-—x<L

@ Each of the four constraints represents one edge of the
feasible polytope.

@ The constraint functions are chosen so that each one
represents a smooth piece of the boundary of €.
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Smoothness

@ In general, the constraint functions are chosen so that each
one represents a smooth piece of the boundary of Q.

@ Non-smooth, unconstrained optimization problems can
sometimes be reformulated as smooth constrained problems.

@ Consider the unconstrained scalar problem of minimizing a
non-smooth function f(x) defined by,

f(x) = max(x?, x)

@ It has kinks at x =0 and x = 1.
@ The solution at x* = 0.

@ A smooth, constrained formulation of this problem can be
obtained by adding an artificial variable t and writing,
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Smoothness

min t, st, t>x, t>x°.

@ In the examples above we expressed inequality constraints in a
slightly different way from the form ¢;(x) > 0.

@ However, any collection of inequality constraints with > or <
and nonzero right-hand-sides can be expressed in the form
ci(x) > 0 by simple rearrangement of the inequality.

t—x>0, t—x220.
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EXAMPLES

@ To introduce the basic principles behind the characterization
of solutions of constrained optimization problems, we work
through three simple examples.

Definition

At a feasible point x, the inequality constraint i € .# is said to be
active if ¢j(x) = 0 and inactive if the strict inequality ¢; > 0 is
satisfied.

Definition

The active set <7 (x) at any feasible x consists of the equality
constraint indices from & together with the indices of the
inequality constraints i for which ¢;(x) = 0; that is,

(x) = & U{i € |ci(x) = 0}.




Constrained Optimization

Lists in Beamer

Example-1

The first example is a two-variable problem with a single equality
constraint:
min x3 + xp xF+x3-2=0 (7)

f(X):X1+X2, I =¢, &= {1}

alx)=xt+x3 -2

The feasible set for this problem is the circle of radius v/2
centered at the origin.

Just the boundary of this circle, not its interior.
The solution x* is (—1,—1).
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Example-1
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Figure: showing constraint and function gradients at various feasible
points.

@ From any other point on the circle, it is easy to find a way to
move that stays feasible (that is, remains on the circle) while
decreasing f.

o From the point x = (1/2,0)", any move in the clockwise
direction around the circle has the desired effect.
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A SINGLE EQUALITY CONSTRAINT

@ From the figure we see that at the solution x*, the normal to
the constraint Vcp(x*) is parallel to V£(x*).

@ There is a scalar A\] (in this case A\] = —1/2) such that
Vi(x*) = AiVa(x). (8)

e To retain feasibility with respect to the function ¢1(x) = 0, it
is require for any small (but nonzero) step s to satisfy that
ci(x+s)=0;ie:

0=c(x+s)~ca(x)+Va(x)Ts=Va(x)'s.
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A SINGLE EQUALITY CONSTRAINT

@ The step s retains feasibility with respect to ci, to first order,
when it satisfies
Ve (x)'s = 0. (9)
o If we want s to produce a decrease in f;

0> f(x+s)—f(x)~ VFf(x)s

@ or to first order
Vi(x)Ts <0 (10)
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A SINGLE EQUALITY CONSTRAINT

e Existence of a small step s that satisfies both (9) and (10)
strongly suggests existence of a direction d where we can get
some improvement in the process of minimisation.

@ The size of d could be not small; we could have d ~ s/||s]|| to
ensure that the norm of d is close to 1 with the same
properties, namely

Va(x)"d=0 Vf(x)"d <0. (11)

o If there is no direction d with the properties (11), then is it
likely that we cannot find a small step s with the properties
(9) and (10).

@ In this case, x* would appear to be a local minimiser.

@ The only way that a d satisfying (11) doesn't exist is if Vf(x)
and Vci(x) are parallel.



Constrained Optimization

Lists in Beamer

A SINGLE EQUALITY CONSTRAINT

@ Or precisely if the condition
Vf(X) = )\1VC1(X)

holds at x for some scalar \;.

e If Vf(x) and Vci(x) are not parallel then we can set:

S o) Va(x)VF(x)Vea(x)T
7=~ (vt Nt )
and 3
=T )

@ It can be verified that (13) satisfies (11).
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A SINGLE EQUALITY CONSTRAINT

@ To write the condition (11) more succinctly we introduce the
notion of the Lagrangian function.

Z(x, A1) = f(x) = Ma(x). (14)

@ The gradient w.r.t x of the Lagrangian is given by

ng(x, /\1) = Vf(X) —)\1VC1(X) (15)

e With the above introduced notions the condition (11) can
now be stated as:
At the solution x*, there is a scalar A] such that

V2 (x*, \5) = 0. (16)
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A SINGLE EQUALITY CONSTRAINT

@ This observation suggests that we can search for solutions of
the equality-constrained problem (7) by seeking stationary
points of the Lagrangian function.

@ The scalar quantity Ap is called a Lagrange multiplier for the
constraint ¢;(x) = 0.

@ Though the condition
Vi(x*) = A\iVa(x®)

appears to be necessary for an optimal solution of the
problem, it is clearly not sufficient.

o The condition is satisfied at the point x = (1,1) with A\; = 1.
e But, (1,1) is obviously not a solution.

@ In fact, it maximizes the function f on the circle.
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A SINGLE EQUALITY CONSTRAINT

@ What may seem a way out from the observation we made in
regards to the previous problem is to obtain a sufficient
condition for equality-constrained problems is:
simply by placing some restriction on the sign of A;.

o Consider the constraint
XF+x3-2=0
by its negative i.e.
2-x—x3=0

in the example under consideration.

@ The solution of the problem is not affected, but the value of
A} that satisfies the condition (16) changes from A} = —% to
=1

2
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A SINGLE INEQUALITY CONSTRAINT

@ Here we consider a small modification of Example-1.

@ Here the equality constraint is replaced by an inequality.

EXAMPLE-2
Consider
minx;+x  2—xf—x3 >0 (17)
° f(X):X1+X2, f:{l}, E=0¢

alx) =2—x2 —x2

The feasible region for this problem is the circle of radius v/2
centered at the origin.

Just not the boundary of this circle, but its interior as well.
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A SINGLE INEQUALITY CONSTRAINT

@ The solution x* is still (=1, —1)7.

@ And the Lagrange multiplier condition holds at (—1,—1) for

the value of A} = 1.

@ However, this inequality-constrained problem differs from the
equality-constrained problem.

@ The sign of the Lagrange multiplier plays a significant role, as
we now argue.

@ Let us conjecture that a given feasible point x is not optimal
if we can find a small step s that both retains feasibility and
decreases the objective function f to first order.

@ The main difference between problems with inequality
constraint and equality constraint comes in the handling of
the feasibility condition.
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A SINGLE INEQUALITY CONSTRAINT

@ The step s improves the objective function, to first order, if

Vf(x)Ts < 0.

@ s retains feasibility if

0<c(x+s)~cal(x)+ Va(x)Ts.

@ That is to first order, feasibility is retained if

a(x)+Va(x)"s>o0. (18)

@ In determining whether a step s exists that satisfies both the
conditions, we consider the following two cases,
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A SINGLE INEQUALITY CONSTRAINT

In determining whether a step s exists that satisfies both the
conditions, we consider the following two cases,

Figure: Improvement directions s from two feasible points x for the
problem at which the constraint is active and inactive, respectively
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A SINGLE INEQUALITY CONSTRAINT

CASE-1

@ Consider first the case in which x lies strictly inside the circle.

@ the strict inequality c1(x) > 0 holds.

@ In this case, any step vector s satisfies the condition (18),
provided only that its length is sufficiently small.

e In fact, whenever Vf(x) # 0, we can obtain a step s that
satisfies both the conditions (10) and (18).

@ Precisely
s = —aVf(x),

for any positive scalar « sufficiently small.

@ This definition does not give a step s with the required
properties when
Vf(x)=0
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A SINGLE INEQUALITY CONSTRAINT

CASE-2

o Consider now the case in which x lies on the boundary of the
circle.

@ So that ¢1(x) = 0.

@ The conditions (10) and (18) therefore become:

Vf(x)"s <0, Ve (x)"s > 0. (19)

@ The first of these conditions defines an open half-space.

@ While the second defines a closed half-space.
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A SINGLE INEQUALITY CONSTRAINT

\/-Any d in this cone is a good search
direction, to first order

Figure: A direction d that satisfies both conditions (10) and (18) lies in
the intersection of a closed half-plane and an open half-plane.

@ It is clear from this figure that the intersection of these two
regions is empty only when V£(x) and Vci(x) point in the
same direction.
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A SINGLE INEQUALITY CONSTRAINT

@ That is, when
Vf(x) = MVal(x), for some A1 > 0. (20)

@ The sign of the multiplier is significant here.

@ If the Lagrange multiplier condition were satisfied with a
negative value of A;, then Vf(x) and V¢i(x) would point in
opposite directions.

@ We see from the figure that the set of directions that satisfy
both conditions (10) and (18) would make up an entire open
half-plane.
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A SINGLE INEQUALITY CONSTRAINT

@ The optimality conditions for both cases | and Il can again be
summarized neatly with reference to the Lagrangian function

@ When no first-order feasible descent direction exists at some
point x*, we have

Vi Z(x*, A1) =0, for some \] > 0, (21)

@ where we also require that

1a(x’) =0 (22)

e Condition (22) is known as a complementarity condition
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A SINGLE INEQUALITY CONSTRAINT

o It implies that the Lagrange multiplier A1 can be strictly
positive only when the corresponding constraint ¢j is active.

@ In case |, we have that ¢;(x*) > 0.
@ So (22) requires that

e And (21) reduces to
Vi(x*)=0
as was required by Case-l.

o In case-Il, (22) allows A] to take on a non-negative value, so
(21) becomes equivalent to (20).
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TWO INEQUALITY CONSTRAINTS

Example-3
@ Suppose we add an extra constraint to the previous problem.
e Consider
min x1 + x2 2-x}—x3>0, x>0 (23)

f(X) =x1+x, I ={1,2}, &§=¢

a(x)=2—x2 —x3

C2(X) = X2

The feasible region for this problem is the upper half disk of
radius /2 centered at the origin.
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TWO INEQUALITY CONSTRAINTS

Figure: Feasible region, illustrating the gradients of the active constraints
and objective at the solution

o The solution lies at (—v/2,0)7.
@ It is a point at which both constraints are active.
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TWO INEQUALITY CONSTRAINTS

o By repeating the arguments for the previous examples, we
would expect a direction d of first-order feasible descent to
satisfy

Ve(x)Td>0, ies={1,2} Vfld<0 (24)

@ It is clear from the figure that no such direction can exist
when x = (—v/2,0).

@ The conditions Vci(x)Td > 0 i = 1,2 are both satisfied only
if d lies in the quadrant defined by Vci(x) and Ve(x).

@ But it is clear that all vectors d in this quadrant satisfy
VFTd>o.
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TWO INEQUALITY CONSTRAINTS

@ Let us see how the Lagrangian and its derivatives behave for
this problem and the solution point x = (—+/2,0)".

First, for each additional constraint ¢;(x) an additional term
Aic(x) is added in the Lagrangian function .’

ZL(x,\) = f(x) — Aici(x) — Aaca(x), (25)

A = (A1, \2) 7 is the vector of Lagrange multipliers.

The extension of the Lagrangian condition to this case is

Vi Z(x*,\*) =0, for some , \* > 0. (26)

@ A >0 means A7 > 0,Vi.



Constrained Optimization

Lists in Beamer

TWO INEQUALITY CONSTRAINTS

e Applying the complementarity condition (22) to both
inequality constraints gives:

ja(x*)=0 Ae(x*)=0 (27)

o Now when xx = (—ﬁ,O)T, we have

VF(x) = H . Va(xt) = [z\ﬂ L Vo(x) = m

(28)

@ We have

VX.,%(X*, )\*) = Vf(X*) - )\1VC1(X*) - )\QVCQ(X*)
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TWO INEQUALITY CONSTRAINTS

@ The Lagrange multiplier for x* can be obtained as the
solution of
VxZ(x*,A*)=0

@ That is \* is given as:

. [1/(21@]

@ Now let us consider some other feasible points that are not
solutions of, and examine the properties of the Lagrangian
and its gradient at these points.

o For x = (v/2,0)7, both constraints are active.
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TWO INEQUALITY CONSTRAINTS

Figure: lllustrating the gradients of the active constraints and objective at
a non-optimal point.

e From this point it is easy to identify points that satisfy (24)
o d =(—1,0)7 is one such vector (there are many others).



Constrained Optimization

Lists in Beamer

TWO INEQUALITY CONSTRAINTS

o For the value x = (v/2,0)7 it is easy to verify that the
Lagrange multiplier condition

VXX(X, A) - O

is satisfied only when A = (—1/(2v/2),1)7.

The first component A\; < 0.

So the condition (26) are not satisfied at this point.
Let us consider the point (1,0)7.

Here only the second constraint ¢ is active.

Any small step s away from this point will continue to satisfy
ca(x+s)>0
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TWO INEQUALITY CONSTRAINTS

We need to consider only the behavior of ¢, and;

f in determining whether s is indeed a feasible descent step.

Using similar arguments as made before for the previous
example we find that the direction of feasible descent d must
satisfy

Vo(x)'d>0, Vf(x)Td<o. (29)

VF(x) = H . Val) = m

The vector d = (—3, 1)7 satisfies (29) and is therefore a
descent direction.



Constrained Optimization

Lists in Beamer

TWO INEQUALITY CONSTRAINTS

The optimality conditions (26) and (27) fail.
We note first from (27) that since ¢1(x) > 0, we must have
A1 =0.

In trying to satisfy V.Z(x,A) = 0, we are left to search for a
value X\s.

Vf(x) — AVea(x)=0.

It can be shown that no such A\, exists.

This point fails to satisfy the optimality conditions.
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