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TANGENT CONE

We determined whether or not it was possible to take a
feasible descent step away from a given feasible point x ;

by examining the first derivatives of f and;

the constraint functions ci .

The first-order Taylor series expansion of these functions
about x was used to form an approximate problem in which
both objective and constraints are linear.

Makes sense if the linearised approximation captures the
essential geometric features of the feasible set near the point
x in question.

Assumptions about the nature of the constraints ci that are
active at x are needed to be made to ensure that the
linearised approximation is similar to the feasible set, near x .
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Cone

Definition

A cone is a set F with the property that for all x ∈ F we have

x ∈ F =⇒ αx ∈ F , for all α > 0.

For example, the set F ⊂ R2 defined by

{(x1, x2)T |x1 > 0, x2 ≥ 0}

is a cone in R2.
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TANGENT CONE

Given a feasible point x , {zk} is called a feasible sequence
approaching x , if zk ∈ Ω for all k , sufficiently large and
zk → x .

Definition

The vector d is said to be a tangent (or tangent vector) to Ω at a
point x if there are a feasible sequence {zk} approaching x and a
sequence of positive scalars {tk} with tk → 0 such that

lim
k→∞

zk − x

tk
= d . (1)

The set of all tangents to Ω at x∗ is called the tangent cone and is
denoted by TΩ(x

∗).
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TANGENT CONE

Let d be a tangent vector with corresponding sequences {zk}
and {tk}.
Consider

lim
k→∞

zk − x

α−1tk
= α lim

k→∞

zk − x

tk
= αd

Therefore, for any α > 0, if d is a tangent vector then αd also
is i.e.

if d ∈ TΩ(x
∗) =⇒ αd ∈ TΩ(x

∗)

By setting zk ≡ x the constant sequence, implies 0 ∈ TΩ(x
∗).
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Linearised Feasible Direction

Definition

Given a feasible point x and the active constraint set A (x), the
set of linearised feasible directions F (x) is

F (x) =

{
d |

dT∇ci (x) = 0, for all i ∈ E

dT∇ci (x) ≥ 0, for all i ∈ A (x) ∩ I

}
(2)

F (x) is also a cone.

The definition of tangent cone does not explicitly depend on
the constraints ci it depends on the geometry of Ω.

The linearised feasible direction set does, however, depend on
the definition of the constraint functions ci , i ∈ E ∪ I .
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Tangent Cone and Feasible Direction for One Equality
Constraint

Consider the problem with one equality constraint.
The objective function f (x) = x1 + x2, E = {1}, I = ϕ
c1(x) = x21 + x22 − 2
The feasible set for this problem is the circle of radius

√
2

centered at the origin.

Figure: Constraint normal, objective gradient, and feasible sequence
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Tangent Cone and Feasible Direction

Consider the non-optimal point x = (
√
2, 0)T .

The figure also shows a feasible sequence approaching x.

zk =

[
−
√

2− 1/k2

−1/k

]

Choose tk = ||zk − x ||, to get d = (0,−1)T is a tangent.

f increases as we move along zk , i.e. f (zk+1) > f (zk) for all
k = 2, 3, . . ..

f (zk) < f (x) for k = 2, 3, . . ., so x cannot be a minimiser.
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Tangent Cone and Feasible Direction

Another feasible sequence is one that approaches
x = (−

√
2, 0)T from the opposite direction.

zk =

[
−
√

2− 1/k2

1/k

]

f decreases along this sequence.

The tangents corresponding to this sequence are d = (0, α)T .

In summary, the tangent cone at x = (−
√
2, 0)T is

{(0, d2)T |d2 ∈ R}.
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Tangent Cone and Feasible Direction

For the set of linearised feasible directions F (x),
d = (d1, d2)

T ∈ F (x) if

0 = ∇c1(x)
Td =

[
2x1
2x2

]T [
d1
d2

]
= −2

√
2d1

F (x) = {(0, d2)T |d2 ∈ R}.
In this case TΩ(x) = F (x).

Suppose that the feasible set is defined instead by the formula

Ω = {x |c1(x) = 0}, where c1(x) = (x21 + x22 − 2)2 = 0

Ω is geometrically the same, but with a different algebraic
specification.
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Tangent Cone and Feasible Direction

Then d belongs to the linearised feasible set if:

0 = ∇c1(x)
Td =

[
4(x21 + x22 − 2)x1
4(x21 + x22 − 2)x2

]T [
d1
d2

]
=

[
0
0

]T [
d1
d2

]

which is true for all (d1, d2)
T .

F (x) = R2.

So for this algebraic specification of Ω, the tangent cone and
linearised feasible sets differ.
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Tangent Cone and Feasible Direction for One
In-Equality Constraint

The solution x = (−1,−1)T is the same as in the
equality-constrained case.
But, there is a much more extensive collection of feasible
sequences that converge to any given feasible point.

Figure: Feasible sequences converging to a particular feasible point for
the region defined by x21 + x22 ≤ 2
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Tangent Cone and Feasible Direction

From the point x = (−
√
2, 0)T , all the feasible sequences

defined above for the equality-constrained problem are still
feasible.

There are also infinitely many feasible sequences that converge
to x , along a straight line from the interior of the circle.

zk = (−
√
2, 0)T + (1/k)w ,

where w is any vector whose first component is positive
(w1 > 0).

zk is feasible provided that ||zk || ≤
√
2 i.e.

(−
√
2 + w1/k)

2 + (w2/k)
2 ≤ 2,

Which is true when k ≥ (w2
1 + w2

2 )/(2
√
2w1)
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Tangent Cone and Feasible Direction

we can also define an infinite variety of sequences that
approach x along a curve from the interior of the circle.

To summarize, the tangent cone to this set at (−
√
2, 0)T is

{(w1,w2)
T |w1 ≥ 0}.

For the feasibility set F (x) let us consider:

0 ≤ ∇c1(x)
Td =

[
−2x1
−2x2

]T [
d1
d2

]
= 2

√
2d1

Hence, we obtain F (x) = TΩ(x) for this particular algebraic
specification of the feasible set.
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Constraint qualifications

Constraint qualifications are conditions under which the linearised
feasible set F (x) is similar to the tangent cone TΩ(x).

Most constraint qualifications ensure that these two sets are
identical.

These conditions ensure that the F (x), which is constructed by
linearising the algebraic description of the set Ω at x , captures the
essential geometric features of the set Ω in the vicinity of x , as
represented by TΩ.

Definition

Given the point x and the active set A (x), we say that the linear
independence constraint qualification (LICQ) holds if the set of active
constraint gradients {∇ci (x)|i ∈ A (x)} is linearly independent.

In general, if LICQ holds, none of the active constraint gradients can be
zero.
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FIRST-ORDER OPTIMALITY CONDITIONS

Consider the constrained optimisation problem

min
x∈Rn

f (x) subject to

{
ci (x) = 0, i ∈ E

cj(x) ≥ 0, j ∈ I
(3)

f and ci are scalar valued functions of the vector of unknowns x
and E and I are set of indices. Define the Lagrangian function
for the general problem as

L (x , λ) = f (x)−
∑

i∈E∪I

λici (x). (4)

The necessary conditions defined in the following theorem are
called first-order conditions.
They are named so owing to their association with gradients
(first-derivative vectors) of the objective and constraint
functions.
They act as a foundation for many of the algorithms.
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First-Order Necessary Conditions

Theorem

Suppose that x∗ is a local solution of the optimisation problem (3),
that the functions f and ci ’s in (3) are continuously differentiable,
and that the LICQ holds at x∗. Then there is a Lagrange multiplier
vector λ∗, with components λ∗

i , i ∈ E ∪I , such that the following
conditions are satisfied at (x∗, λ∗)

∇xL (x∗, λ∗) = 0, (5)

ci (x
∗) = 0, for all i ∈ E , (6)

ci (x
∗) ≥ 0, for all i ∈ I , (7)

λ∗
i ≥ 0, for all i ∈ I , (8)

λ∗
i ci (x

∗) = 0, for all i ∈ E ∪ I . (9)
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First-Order Necessary Conditions

The above stated conditions are often known as the
Karush–Kuhn–Tucker conditions, or KKT conditions for short.

The last set of conditions comprises of conditions that are the
complementarity conditions; they imply that either constraint
i is active or λ∗

i = 0, or possibly both.

The Lagrange multipliers corresponding to inactive inequality
constraints are zero.

We can omit the terms for indices i /∈ A (x∗) and rewrite the
first condition as

0 = ∇xL (x∗, λ∗) = ∇f (x∗)−
∑

i∈A (x∗)

λ∗
i ∇ci (x

∗). (10)
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Strict Complementarity

Definition

Given a local solution x∗ of the optimisation problem and a vector
λ∗ satisfying the KKT conditions, we say that the strict
complementarity condition holds if exactly one of λ∗

i and ci (x
∗) is

zero for each index i ∈ I . In other words, we have that λ∗
i > 0 for

each i ∈ I ∪ A (x∗).

Satisfaction of the strict complementarity property usually
makes it easier for algorithms to determine the active set
A (x∗) and converge rapidly to the solution x∗.

For a given problem and solution point x∗, there may be many
vectors λ∗ for which the KKT conditions are satisfied.

When the LICQ holds, however, the optimal λ∗ is unique.



20/41

TANGENT CONE AND CONSTRAINT QUALIFICATIONS

Lists in Beamer

KKT Conditions With an Example

Consider the feasible region illustrated in the figure below
described by the four constraints of the ensuing optimization
problem.

minx

(
x1 −

3

2

)2

+

(
x2 −

1

2

)2

s.t.


1− x1 − x2
1− x1 + x2
1 + x1 − x2
1 + x1 + x2

 ≥ 0. (11)

Figure: Four constraints
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KKT Conditions With an Example

It can be shown that the solution is x∗ = (1, 0)T .

The first and second constraints are active at this point.

Denoting them by c1 and c2 (and the inactive constraints by
c3 and c4).

To verify the KKT conditions compute

∇f (x∗) =

[
−1
−1

2

]
, ∇c1(x

∗) =

[
−1
−1

]
, ∇c2(x

∗) =

[
−1
1

]
.

Therefore, the KKT conditions are satisfied when we set

λ∗ = (
3

4
,
1

4
, 0, 0)T .
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FIRST-ORDER OPTIMALITY CONDITIONS

Lemma

Let x∗ be a feasible point. The following two statements are true.

1 TΩ(x
∗) ⊂ F (x∗).

2 If the LICQ condition is satisfied at x∗, TΩ(x
∗) = F (x∗).

The above Lemma uses a constraint qualification (LICQ) to relate
the tangent cone TΩ to the set F of first-order feasible directions.
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A FUNDAMENTAL NECESSARY CONDITION

Definition (Local Solution)

A local solution of the optimisation problem is a point x at which
all feasible sequences have the property that f (zk) ≥ f (x) for all k
sufficiently large.

Theorem

If x∗ is a local solution of the optimization problem (3), then we
have

∇f (x∗)Td ≥ 0, for all d ∈ TΩ(x
∗) (12)

Therefore the theorem says if a sequence zk as considered
above exists, then its limiting directions must make a
non-negative inner product with the gradient of the objective
function.
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A FUNDAMENTAL NECESSARY CONDITION

Proof of Theorem

To contradict lets assume that there is a tangent d for which
∇f (x∗)Td < 0.

Let {zk} and {tk} be the sequences satisfying definition of
tangent vector for this d .

Then we have:

lim
k→∞

zk − x∗

tk
= d

zk = x∗ + tkd + o(tk).

. for k sufficiently large.
We have:

f (zk) = f (x∗) + (zk − x∗)T∇f (x∗) + o(||zk − x∗||)
= f (x∗) + tkd

T∇f (x∗) + o(tk)
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A FUNDAMENTAL NECESSARY CONDITION

Proof of Theorem

Since dT∇f (x∗) < 0, and the remainder term eventually gets
dominated by the first-order term we have

f (zk) < f (x∗) +
1

2
tkd

T∇f (x∗), for all k sufficiently large.

This implies given an open nbhd of x∗, a k sufficiently large
can be chosen such that zk lies in this nbhd and has a lower
value lower value of the objective f .

Therefore, x∗ is not a local solution.
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Is the Converse True?

The converse of this result is not necessarily true.

We may have ∇f (x∗)Td ≥ 0 for all d ∈ TΩ(x
∗), yet x∗ not

being a local minimiser.

Consider the problem

min x2 subject to x2 ≥ −x21 .

The problem is unbounded.

Let us examine its behavior at x∗ = (0, 0)T .

All limiting directions d of feasible sequences must have
d2 ≥ 0, so that ∇f (x∗)Td = d2 ≥ 0.

x∗ is clearly not a local minimiser.

The point (α,−α2)T for α > 0 has a smaller function value
than x∗, and can be brought arbitrarily close to x∗ by setting
α sufficiently small.
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Is the Converse True?

Figure: showing various limiting directions of feasible sequences at the
point (0, 0)T .
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FARKAS’ LEMMA

The most important step in proving the KKT theorem.

This lemma considers a cone K defined as follows:

K = {By + Cw | y ≥ 0}, (13)

where B and C are matrices of dimension n ×m and n × p,
respectively, and y and w are vectors of appropriate
dimensions.

Given g ∈ Rn, Farkas’ Lemmma states that one (and only
one) of the two alternatives is true.

1 Either g ∈ K , or else
2 there is a vector d ∈ Rn such that

gTd < 0, BTd ≥ 0, CTd = 0. (14)
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FARKAS’ LEMMA

Figure: Farkas’ Lemma: Either g ∈ L (left) or there is a separating
hyperplane (right).

In the above figure B has three columns, C is null and n = 2.

Note that in the second case, the vector d defines a
separating hyperplane, which is a plane in Rn that separates
the vector g from the cone K .
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FARKAS’ LEMMA

Farkas’ Lemma

Let the cone K be defined as above. Given any vector g ∈ Rn, we
have either that g ∈ K or that there exist d ∈ Rn satisfying (14),
but not both.
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Proof of First-Order Necessary Conditions (KKT)

Suppose that x∗ ∈ Rn is a feasible point at which the LICQ
holds.
The theorem claims that if x∗ is a solution for the
optimisation problem, then there is a vector λ∗ ∈ Rm that
satisfies the KKT conditions.
We first show that there are multipliers λi , i ∈ A (x∗), such
that the following is satisfied:

∇f (x∗) =
∑

i∈A (x∗)

λi∇ci (x
∗)

We have from the previous theorem

dT∇f (x∗) ≥ 0, for all tangent vectors d ∈ TΩ(x
∗).

We also have the equivalence of F (x∗) and TΩ(x
∗),

whenever LICQ holds
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But putting together the above two results we have

dT∇f (x∗) ≥ 0 for all d ∈ F (x∗).

Consider the cone N defined by:

N = {
∑

i∈A (x∗)

λi∇ci (x
∗), λi ≥ 0 for i ∈ A (x∗) ∩ I } (15)

Set g = ∇f (x∗).

Now, Farkas’ Lemma implies either

∇f (x∗) =
∑

i∈A (x∗)

λi∇ci (x
∗) = A(x∗)Tλ∗, λi ≥ 0 for i ∈ A (x∗)∩I

(16)

or else there is a direction d such that dT∇f (x∗) < 0 and
d ∈ F (x∗).
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We have as a consequence of the previously stated results,
that (16) holds true.

We now define the vector λ∗ as

λ∗
i =

{
λi , i ∈ A (x∗),

0, i ∈ I \ A (x∗),
(17)

and show that the this choice of λ∗, together with out local
solution x∗, satisfies the KKT conditions.

The stationary point condition for the Lagrangian function
follows immediately from (16) and the definitions of
Lagrangian function and the definition of λ∗ above.

Since x∗ is feasible, the two feasibility conditions are satisfied.

λ∗
i ≥ 0 for i ∈ A (x∗) ∩ I , while from the definition of λ∗,

λ∗
i = 0 for i ∈ I \ A (x∗).
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Hence, λ∗
i ≥ 0 for i ∈ I .

We have for i ∈ A (x∗) ∩ I that ci (x
∗) = 0, while for

i ∈ I \ A (x∗), we have λ∗
i = 0.

Hence λ∗
i ci (x

∗) = 0, for i ∈ I .
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SECOND-ORDER CONDITIONS

The KKT conditions tell us how the first derivatives of f and
the active constraints ci are related to each other at a solution
x∗.

When these conditions are satisfied, any movement along any
vector w ∈ F (x∗) either increases the first-order
approximation to the objective function (∇f (x∗)Tw > 0) or
else keeps this value the same (∇f (x∗)Tw = 0).

For the directions w ∈ F (x∗) for which ∇f (x∗)Tw = 0 one
cannot determine from first derivative information alone
whether a move along this direction will increase or decrease
the objective function f .

Second derivatives play a “tiebreaking” role.
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SECOND-ORDER CONDITIONS

The second derivative terms in the Taylor series expansions of
f and ci are examined by the second-order conditions.

The approach is to see whether this extra information resolves
the issue of increase or decrease in f .

These conditions are concerned with the curvature of the
Lagrangian function in the “undecided” directions
(w ∈ F (x∗) for which ∇f (x∗)Tw = 0).

For second derivatives stronger smoothness assumptions are
needed, f and ci , i ∈ I ∪ E , are all assumed to be twice
continuously differentiable.
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SECOND-ORDER CONDITIONS

Definition

Given F (x∗) and some Lagrange multiplier vector λ∗ satisfying the
KKT conditions, we define the critical cone C (x∗, λ∗) as follows:

C (x∗, λ∗) = {w ∈F (x∗)|∇ci (x
∗)Tw = 0, for all

i ∈ A (x∗) ∩ I with λ∗
i > 0}

Equivalently,

w ∈ C (x∗, λ∗) ⇔
∇ci (x

∗)Tw = 0, for all i ∈ E ,

∇ci (x
∗)Tw = 0, for all i ∈ A (x∗) ∩ I with λ∗

i > 0,

∇ci (x
∗)Tw ≥ 0, for all i ∈ A (x∗) ∩ I with λ∗

i = 0.
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SECOND-ORDER CONDITIONS

From the above definition, and the fact that λ∗
i = 0 for all

inactive components i ∈ I \ A (x∗), it follows that

w ∈ C (x∗, λ∗) =⇒ λ∗
i ∇ci (x

∗)Tw = 0, for all i ∈ E ∪ I .

Now from the first KKT condition and from the definition of
the Lagrangian function, we have

w ∈ C (x∗, λ∗) =⇒ wT∇f (x∗) =
∑

i∈E∪I

λ∗
i w

T∇ci (x
∗) = 0.

Hence the critical cone contains directions from F (x∗) for
which it is not clear from first derivative information alone
whether f will increase or decrease.
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Second-Order Necessary Conditions

Theorem

Suppose that x∗ is a local solution of the optimisation problem and
that the LICQ condition is satisfied. Let λ∗ be the Lagrange
multiplier vector for which the KKT conditions are satisfied. Then

wT∇2
xxL (x∗, λ∗)w ≥ 0, for all w ∈ C (x∗, λ∗). (18)
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Second-Order Sufficient Conditions

Theorem

Suppose that for some feasible point x∗ ∈ Rn there is a Lagrange
multiplier vector λ∗ such that the KKT conditions are satisfied.
Suppose also that

wT∇2
xxL (x∗, λ∗)w > 0, for all w ∈ C (x∗, λ∗),w ̸= 0. (19)

Then x∗ is a strict local solution for the optimisation problem.
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Example

f (x) = x1 + x2, c1(x) = 2− x21 − x22
E = ϕ, I = {1}
The Lagrangian is

L (x , λ) = (x1 + x2)− λ1(2− x21 − x22 ),

It can be verified that the KKT conditions are satisfied at
x∗ = (−1,−1)T , with λ∗

1 =
1
2 .

The Lagrangian Hessian at this point is

∇2
xxL (x∗, λ∗) =

[
2λ∗

1 0
0 2λ∗

1

]
=

[
1 0
0 1

]
This matrix is positive definite, so it certainly satisfies the
conditions of the above theorem, x∗ = (−1,−1)T is a strict
local solution.
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