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Linear programming and simplex method

Today, linear programming and the simplex method continue
to hold sway as the most widely used of all optimisation tools.

The technique is to formulate linear models and solve them
with simplex-based software.

Often, the situations they model are actually non-linear.

But linear programming is appealing,

advanced state of the software,

guaranteed convergence to a global minimum,

uncertainty in the model makes a linear model more
appropriate than an overly complex non-linear model.
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Non-linear Programming Might be the Future !!!

Non-linear programming may replace linear programming as
the method of choice in some applications as the non-linear
software improves.

A new class of methods known as interior-point methods has
proved to be faster for some linear programming problems.

But the continued importance of the simplex method is
assured for the foreseeable future.
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LINEAR PROGRAMMING

Linear programs have:

linear objective function;

linear constraints;

which may include both equalities and inequalities.

The feasible set is a polytope, a convex, connected set with
flat, polygonal faces.

Owing to the linearity of the objective function its contours
are planar.

Figure below depicts a linear program in two-dimensional
space, in which the contours of the objective function are
indicated by dotted lines.
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LINEAR PROGRAMMING

Figure: A linear program in two dimensions with solution at x∗

The solution in this case is unique-a single vertex.
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Solution to Linear Programs

The solution to a linear program could be non-unique as
well.

It could be an entire edge instead of just one vertex.

In higher dimensions, the set of optimal points can be a
single vertex, an edge or face, or even the entire feasible
set.

The problem has no solution if the feasible set is empty
(infeasible case);

or if the objective function is unbounded below on the
feasible region (the unbounded case)
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Standard Form of Linear Programs

Linear programs are usually stated and analysed in the
following standard form:

Linear Program

min cTx , subject to Ax = b, x ≥ 0, (1)

where

c and x are vectors in Rn,

b is a vector in Rm and A is an m × n matrix
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Transforming to Standard Form

Consider the form:

min cT x , subject to Ax ≤ b (2)

without any bounds on x .

By introducing a vector of slack variables z the inequality
constraints can be converted to equalities.

min cT x , subject to Ax + z = b, z ≥ 0, (3)

Still not all variables (x) are constrained to be non-negative as
in the standard form.



9/70

Linear Programming: The Simplex Method

Lists in Beamer

Transforming to Standard Form

It is dealt by splitting x into non-negative and non-positive
parts.

x = x+ − x−, x+ = max (x , 0) ≥ 0 and x− = max (−x , 0)

Now the above considered problem can be written as:

min

 c
−c
0

 x+x−
z

 s.t.
[
A −A I

] x+x−
z

 = b,

x+x−
z

 ≥ 0,

The above system is now in the standard form.
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Transforming to Standard Form

Inequality constraints of the form x ≤ u and Ax ≥ b can be
converted to equality constraints by adding or subtracting
slack variables.

x ≤ u ⇔ x + w = u, w ≥ 0,

Ax ≥ b ⇔ Ax − y = b y ≥ 0

We subtract the variables from the left hand side, they are
known as surplus variables.

We add the variables to the left hand side, they are known as
deficit variables.

By simply negating c “maximise” objective max cT x can be
converted to “minimise” form min − cT x .
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LINEAR PROGRAMMING

The linear program is said to be infeasible if the feasible set is
empty.

The problem is considered to be unbounded if the objective
function is unbounded below on the feasible region.

That is, there is a sequence of points xk in the feasible region
such that cT xK ↓ −∞.

Unbounded problems have no solution.

For the standard formulation , we will assume throughout that
m < n.

Otherwise, the system Ax = b contains redundant rows, or is
infeasible, or defines a unique point.

When m ≥ n, factorisations such as the QR or LU
factorisation can be used to transform the system Ax = b to
one with a coefficient matrix of full row rank.
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OPTIMALITY CONDITIONS

Optimality conditions can be derived from the first-order
conditions, the Karush–Kuhn–Tucker (KKT) conditions.

Convexity of the problem ensures that these conditions are
sufficient for a global minimum.

Do not need to refer to the second-order conditions, which are
not informative because the Hessian of the Lagrangian is zero.

The LICQ condition is not required to be enforced here as the
KKT results continue to hold for dependent constraints
provided they are linear, as is the case here.
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OPTIMALITY CONDITIONS

The Lagrange multipliers for linear problems are partitioned
into two vectors λ and s.

Where λ ∈ Rm is the multiplier vector for the equality
constraints Ax = b.

While s ∈ Rn is the multiplier vector for the bound constraints
x ≥ 0.

Using the definition we can write the Lagrangian function:

L (x , λ, s) = cT x − λT (Ax − b)− sT x . (4)



14/70

Linear Programming: The Simplex Method

Lists in Beamer

OPTIMALITY CONDITIONS

The first-order necessary conditions for x∗ to be a solution of
the linear programming problem (1) are, if there exists λ and
s such that:

ATλ+ s = c, (5)

Ax = b, (6)

x ≥ 0, (7)

s ≥ 0, (8)

xi si = 0, i = 1, 2, . . . , n. (9)

The last condition, which is the complementarity condition,
which says that at-least either one of xi or si is zero, can be
written alternatively as

xT s = 0
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Sufficiency of Optimality Conditions

Let (x∗, λ∗, s∗) denote a vector triple that satisfy the KKT
conditions, then

cT x∗ = (ATλ∗ + s∗)T x∗ = (Ax∗)Tλ∗ = bTλ∗ (10)

The first order KKT conditions for optimality for LPP is
indeed sufficient.

Let x̄ be any other feasible point, so that Ax̄ = b and x̄ ≥ 0.

cT x̄ = (ATλ∗ + s∗)T x̄

= bTλ∗ + x̄T s∗

≥ bTλ∗ = cT x∗
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OPTIMALITY CONDITIONS

The above inequality tells that no other feasible point can
have a lower objective value than cT x∗.

To say more the feasible point x̄ is optimal if and only if

x̄T s∗ = 0

otherwise the inequality is strict.

When s∗i > 0 then we must have x̄i = 0 for all solutions x̄ of
the LPP.
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Duality

Dual problem:

constructed from the primal problem (objective and
constraints).

related to it in certain ways,

possibly easier to solve computationally,

possibly gives lower bound on the optimal primal objective.

Applies to convex problems.
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The Primal Problem:

Consider only inequality constraints.

Let the objective f and the constraints ci are all convex.

min
x∈Rn

f (x), s.t. ci (x) ≥ 0, i = 1, 2, . . . ,m. (11)

with c(x) = (c1(x), . . . , cm(x))
T ,

Lagrangian L (x , λ) = f (x)− λT c(x).

Note that L (., λ) is convex for any λ ≥ 0.
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The Dual Problem:

The dual objective function q : Rm → R is given as:

q(λ) := inf
x

L (x , λ). (12)

max
λ∈Rm

q(λ), s.t. λ ≥ 0. (13)

With domain D = {λ : q(λ) > −∞}
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Primal to Dual

Consider the problem

min
(x1,x2)

0.5(x21 + x22 ) s.t. x1 − 1 ≥ 0.

The Lagrangian is

L (x1, x2, λ1) = 0.5(x21 + x22 )− λ1(x1 − 1).

If λ1 is fixed then L is a convex function of (x1, x2)
T .

The infimum with respect to (x1, x2)
T is achieved when the

partial derivatives with respect to x1 and x2 are zero, i.e.

x1 − λ1 = 0, x2 = 0
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Primal to Dual

By substituting the infimum values into the Lagrangian
L (x1, x2, λ1) we obtain the dual objective function as:

q(λ1) = 0.5(λ2
1 + 0)− λ1(λ1 − 1) = −0.5λ2

1 + λ1.

The dual problem is

max
λ1≥0

−0.5λ2
1 + λ1,

Which clearly has the solution λ1 = 1.
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The Dual Problem

Given c , b, and A of the primal LP problem in the standard form
we introduce the following problem

max bTλ, subject to ATλ ≤ c . (14)

The above problem is called the Dual problem. It can be restated
as a standard LPP problem as:

max bTλ, subject to ATλ+ s = c , s ≥ 0, (15)

by introducing a vector of dual slack variables s. The variables
(λ, s) in this problem are jointly referred to collectively as dual
variables.
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The primal and dual problems present two different viewpoints
on the same data.

The link between both can be seen via the KKT conditions.

Let us first recast it in the form:

min−bTλ subject to c − ATλ ≥ 0, (16)

Use x ∈ Rn to denote the Lagrange multipliers for the
constraints ATλ ≤ c , the Lagrangian function is

L̄ (λ, x) = −bTλ− xT (c − ATλ).
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Let us write down the KKT conditions for the Dual problem:

Ax = b, (17)

ATλ ≤ c , (18)

x ≥ 0, (19)

xi (c − ATλ)i = 0, i = 1, 2, . . . n. (20)

Define s = c − ATλ

Note that the KKT conditions for both the primal and the
dual are identical.
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The optimal Lagrange multipliers λ in the primal problem are
the optimal variables in the dual problem.

While the optimal Lagrange multipliers x in the dual problem
are the optimal variables in the primal problem.

Given x∗ and λ∗ satisfying the satisfying the KKT conditions
for the dual ( (x , λ, s) = (x∗, λ∗, c − ATλ∗) satisfy the same
for the primal) .

For any other feasible point λ̄ (with ATλ ≤ c) we have:

bT λ̄ = (x∗)TAT λ̄ = (x∗)T (AT λ̄− c) + cT x∗

≤ cT x∗ (AT λ̄− c ≤ 0 and x∗ ≥ 0)

= bTλ∗
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The primal–dual relationship is symmetric (by taking the dual of
the dual problem, we recover the primal problem).

x be a feasible vector for the primal (Ax = b and x ≥ 0).

(λ, s) be a feasible vector for the dual (ATλ+ s = c, s ≥ 0)

0 ≤ xT s = xT (c − ATλ) = cT x − bTλT

⇔ cT x ≥ bTλ.

Duality Gap: cT x − bTλ

Thus, the dual objective function bTλ is a lower bound on the
primal objective function cT x .
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Theorem (Strong duality)

1 If either problem (primal or dual) has a (finite) solution, then
so does the other, and the objective values are equal.

2 If either problem (primal or dual) is unbounded, then the
other problem is infeasible.

Duality is important in the theory of LP (and convex opt. in
general) and in primal-dual algorithms; also, the dual may be easier
to solve than the primal.
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GEOMETRY OF THE FEASIBLE SET

Assume that the matrix A has full row rank.

In practice, a pre-processing is applied to remove some
redundancies from the given constraints and eliminate some of
the variables.

Reformulation by adding slack, surplus, and artificial variables
can also bring out the full row rank.
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Basic Feasible Point (BFP)

A vector x is a basic feasible point if it is feasible and if there
exists a subset B of the index set 1,2,...,n such that:

B contains exactly m indices;

i /∈ B =⇒ xi = 0 (that is, the bound xi ≥ 0 can be active
only if i ∈ B);

The m ×m matrix B defined by

B = [Ai ]i∈B

is non-singular, where Ai is the i th column of A.

A set B satisfying these properties is called a basis for the
problem.

The corresponding matrix B is called the basis matrix.
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The simplex method generates a sequence of iterates xk
that are BFPs;
if the LP has BFPs and at least one of them is a basic optimal
point (= a BFP which is a minimizer), xk converges (in a
finite number of steps) to such a solution.

Theorem

1 If LPP has a non-empty feasible region, then there is at least
one basic feasible point;

2 If LPP has solutions, then at least one such solution is a basic
optimal point.

3 If LPP is feasible and bounded, then it has an optimal
solution.
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VERTICES OF THE FEASIBLE POLYTOPE

Figure: Vertices of a three-dimensional polytope (indicated by *)

The feasible set defined by the linear constraints is a polytope.

The vertices of this polytope are the points that do not lie on
a straight line between two other points in the set.

Geometrically, they are easily recognisable; see Figure
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Algebraically, the vertices are exactly the basic feasible points
defined above.

This important relationship between the algebraic and
geometric viewpoints can be a useful aid to understanding
how the simplex method works.

Theorem

All basic feasible points for LPP are vertices of the feasible
polytope {x |Ax = b, x ≥ 0}, and vice versa.

Degeneracy

A basis B is said to be degenerate if xi = 0 for some i ∈ B ,
where x is the basic feasible solution corresponding to B. A linear
program is said to be degenerate if it has at least one degenerate
basis.
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There are a number of variants of the simplex method.

The one considered here is sometimes known as the revised
simplex method.

All iterates of the simplex method are basic feasible points for
LPP and therefore vertices of the feasible polytope.

Most steps consist of a move from one vertex to an adjacent
one for which the basis B differs in exactly one component.

On most steps (but not all), the value of the primal objective
function cT x is decreased.

The steps may follow an edge along which the objective
function is reduced, and along which we can move infinitely
far without ever reaching a vertex.
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There are at most
(n
m

)
different sets of basic indices B.

So a brute-force way to find a solution would be to try them
all and check the KKT conditions.

The simplex algorithm does better than this.

The major issue at each simplex iteration is to decide which
index to remove from the basis B.

Unless the step is a direction of un-boundedness, a single
index must be removed from B and replaced by another from
outside B.
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Definition

The non-basic index set N is the complement of B, that is:

N = {1, 2, . . . , n} \ B

As B was denoted as the basic matrix, whose columns are Ai

for i ∈ B, N is used to denote the non-basic matrix
N = [Ai ]i∈N

Partition the n-element vectors x , s, and c according to the
index sets B and N

xB = [xi ]i∈B xN = [xi ]i∈N

sB = [si ]i∈B sN = [si ]i∈N

cB = [ci ]i∈B cN = [ci ]i∈N
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From the second KKT condition (Ax = b),

Ax = BxB + NxN = b.

The primal variable x for this simplex iterate is defined as

xB = B−1b, xN = 0. (21)

We are dealing only with basic feasible points.

B is non-singular.

xB ≥ 0.

So this choice of x satisfies two of the KKT conditions:
1 the equality constraints and;
2 the non-negativity condition.
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choose s to satisfy the complementarity condition, by setting
sB = 0.

s+ATλ = c =⇒
(
sB
sN

)
+

(
BT

NT

)
λ =

(
BTλ

sN + NTλ

)
=

(
cB
cN

)

=⇒

{
λ = (B−1)T cB

sN = cN − (B−1N)T cB .
(22)

s ≥ 0, while sB satisfies this, sN = cN − (B−1N)T cB may not.

if it does, i.e.,sN ≥ 0, we have found an optimal (x , λ, s) and
we have finished
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Thus we take out one of the indices q ∈ N for which sq < 0
(there are usually several) and:

allow xq to increase from 0;

fix all other components of xN to 0;

figure out the effect of increasing xq on the current BFP xB
given that we want it to stay feasible wrt Ax = b.

keep increasing xq until one of components of xB (say, that of
xp) is driven to 0.

p leaves B to N , q enters B from N .

This process of selecting entering and leaving indices, and
performing the algebraic operations necessary to keep track of
the values of the variables x , λ, and s is known as pivoting.
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Formally, the pivoting procedure can be written in algebraic
terms.

Both the new iterate x+ and the current iterate x satisfy
Ax = b and xN = 0 and x+i = 0 for i ∈ N \ {q}.

Ax+ =
(
B N

) (
x+B
x+N

)
= Bx+B + Aqx

+
q = BxB = Ax

x+B = xB − B−1Aqx
+
q (23)

Geometrically speaking, (23) is usually a move along an edge
of the feasible polytope that decreases cT x .
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Continue to move along this edge until a new vertex is
encountered.

At this vertex,a new constraint xp ≥ 0 must have become
active,that is,one of the components xp , p ∈ B, has
decreased to zero.

Then remove this index p from the basis B and replace it by q.

cT x+ = cTB x+B + cqx
+
q = cTB xB − cTB B−1Aqx

+
q + cqx

+
q (24)

λT = (cTB B−1), since q ∈ N we have AT
q λ = cq − sq.

cTB B−1Aqx
+
q = λTAqx

+
q = (cq − sq)x

+
q
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Substituting the above in (24) we obtain

cT x+ = cTB xB − (cq − sq)x
+
q + cqx

+
q = cT x + sqx

+
q (25)

q was chosen to have sq < 0.

It follows that the step (23) produces a decrease in the primal
objective function cT x whenever x+q > 0.

Sometimes it is possible to increase x+q to ∞ without ever
encountering a new vertex.

In other words, the constraint x+B = xB − B−1Aq ≥ 0 holds
for all positive values of x+q .

In such cases, the linear program is unbounded; the simplex
method has identified a ray that lies entirely within the feasible
polytope along which the objective cT x decreases to −∞.



42/70

Linear Programming: The Simplex Method

Simplex Method

Simplex Method

Figure: Simplex iterates for a two-dimensional problem.

In this example, the optimal vertex x∗ is found in three steps.
If the basis B is non-degenerate, then its guaranteed that
x+q > 0, so it is assured to get a strict decrease in the

objective function cT x at this step.
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If the problem is non-degenerate, it can be ensured to get a
decrease in cT x at every step, and can therefore prove the
following result concerning termination of the simplex method.

Theorem

Provided that the linear program is non-degenerate and bounded,
the simplex method terminates at a basic optimal point.
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A SINGLE STEP OF THE METHOD



45/70

Linear Programming: The Simplex Method

Simplex Method

Example

Consider the problem

min −3x1 − 2x2 subject to

x1 + x2 + x3 = 5,

2x1 + (1/2)x2 + x4 = 8,

x ≥ 0.

A =

[
1 1 1 0
2 1/2 0 1

]
c =

[
−3 −2 0 0

]T
b =

[
5 8

]T
The constraints that we have are:

Ax = b and x ≥ 0
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Lets start with the basis B = {3, 4} and N = {1, 2}

B =

[
1 0
0 1

]

we have

xB = B−1b =⇒
[
x3
x4

]
=

[
5
8

]
cB =

[
0 0

]T
BTλ = cB

λ =
[
0 0

]T
N =

[
1 1
2 1/2

]
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cN =
[
−3 −2

]T
sN =

[
s1
s2

]
= cN − NTλ =

[
−3 −2

]T
Value of the objective function is cT x = 0.

Both elements of sN are negative, lets choose q = 1.

Solve Bd = Aq (Aq = [1, 2]T ) for d to get

d = [1, 2]T

d > 0

x+q = min
i |di>0

(xB)i
di

= min

{
5

1
,
8

2

}
= 4
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p = 2, which corresponds to x4.

Therefore, 4 moves out of B and goes into N and 1 enters
into B and exits N .

New B = {3, 1} and N = {4, 2}.
Second iteration

B =

[
1 1
0 2

]
B−1 =

[
1 −1

2
0 1

2

]
xB =

[
x3
x1

]
= B−1b =

[
1
4

]

cB = [0,−3]T λ = (BT )−1cB =

[
1 0
−1

2
1
2

] [
0
−3

]
=

[
0
−3

2

]
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Example

N =

[
0 1
1 1

2

]
cN = [0,−2]T

sN =

[
s4
s2

]
= cN − NTλ =

[
3
2
−5

4

]
The objective value cT x = −12.

sN still has one negative component, corresponding to q = 2.

Solve Bd = Aq (Aq = [1, 1/2]T ) for d to get

d = [3/4, 1/4]T

No unboundedness.
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x+q = min
i |di>0

(xB)i
di

= min

{
4

3
, 16

}
=

4

3

p = 1 corresponds to the index 3, which will leave the basis
B.

Update the index sets to B = {2, 1} and N = {4, 3} and
continue.

At the start of the third iteration, we have

xB =

[
x2
x1

]
=

[
4/3
11/3

]
, λ =

[
−5/3
−2/3

]
, sN =

[
s4
s3

]
=

[
7/3
5/3

]

With an objective value of cT x = −41/3, sN ≥ 0, the
optimality test is satisfied, and we terminate.
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Important Aspects for Implementation

There are three important aspects of implementation those need to
be taken care of:

Linear algebra issues—maintaining an LU factorisation of B
that can be used to solve for λ and d .

Selection of the entering index q from among the negative
components of sN . (In general, there are many such
components.)

Handling of degenerate bases and degenerate steps, in which
it is not possible to choose a positive value of x+q without
violating feasibility.



52/70

Linear Programming: The Simplex Method

Simplex Method

LINEAR ALGEBRA IN THE SIMPLEX METHOD

To solve two linear systems involving the matrix B at each
step:

BTλ = cB , Bd = Aq. (26)

Do not calculate the inverse basis matrix B.

Instead, calculate or maintain some factorisation of B, usually
an LU factorisation.

Use triangular substitutions with the factors to recover λ and
d .

The basis matrix B changes by just a single column between
iterations.

It is less expensive to update the factorisation than to
calculate it afresh at each iteration.
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PRICING AND SELECTION OF THE ENTERING
INDEX

There are usually many negative components of sN at each
step.

How to choose one of these to become the index that enters
the basis?

Ideally, want to choose the sequence of entering indices q that
gets to the solution x∗ in the fewest possible steps.

But rarely a global perspective is available to implement this
strategy.

Instead, more shortsighted but practical strategies that obtain
a significant decrease in cT x on just the present iteration are
employed.

There is usually a tradeoff between the effort spent on finding
a good entering index and the amount of decrease in cT x
resulting from this choice.
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STARTING THE SIMPLEX METHOD

The simplex method requires a basic feasible starting point x
and a corresponding initial basis.

B ⊂ {1, 2, . . . , n} with |B| = m;

the basis matrix B is non-singular and xB = B−1b ≥ 0 and
xN = 0.

The problem of finding this initial point and basis may itself
be nontrivial.

More often than not its difficulty is equivalent to that of
actually solving a linear program.

A two-phase approach is commonly used to deal with this
difficulty in practical implementations.
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STARTING THE SIMPLEX METHOD

In Phase I set up an auxiliary linear program based on the
data of the parent LP, and solve it with the simplex method.

The Phase I problem is so designed that an initial basis and
initial basic feasible point is trivial to find.

It’s solution gives a basic feasible initial point for the second
phase.

In Phase II, a second linear program similar to the original LP
is solved, with the Phase-I solution as a starting point.

The solution of the original LP can be extracted easily from
the solution of the Phase-II problem.
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Phase I

Introduce artificial variables z into LP and redefine the
objective function to be the sum of these artificial variables,
as follows:

min eT z , subject to Ax + Ez = b, (x , z) ≥ 0, (27)

where z ∈ Rm, e = (1, 1, . . . , 1)T , and E is a diagonal matrix
whose diagonal elements are:

Ejj = +1 if bj ≥ 0, Ejj = −1 if bj < 0.

The point (x, z) defined by

x = 0, zj = |bj |, j = 1, 2, . . . ,m, (28)

is a basic feasible point for (27).
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Phase I

This point satisfies the constraints in (27).

The initial basis matrix B is simply the diagonal matrix E ,
which is non-singular.

At any feasible point for (27) the artificial variables z
represent the amounts by which the constraints Ax = b are
violated by the x component.

The objective function is simply the sum of these violations.

By minimising this sum we are forcing x to become feasible
for the original problem.

If there exists a vector (x̃ , z̃) that is feasible for (27) such that
eT z̃ = 0, =⇒ z̃ = 0.

Therefore Ax̃ = b and x̃ ≥ 0, so x̃ is feasible for the original
LP.
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Phase I

Conversely, if x̃ is feasible for LP, then the point (x̃ , 0) is
feasible for (27) with an objective value of 0.

Therefore the Phase-I problem (27) has an optimal objective
value of zero if and only if the original LP is feasible.

In Phase I, the simplex method is applied to (27) from the
initial point (28).

The objective function is bounded below by 0.

So the simplex method will terminate at an optimal point.

If eT z is positive at this solution, conclude by the argument
above that the original LP is infeasible.

Otherwise, the method identifies a point (x̃ , z̃) with eT z̃ = 0,
which is also a basic feasible point for the Phase-II problem.
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Phase II

The Phase II problem is given as:

min cT x subject to Ax + z = b, x ≥ 0, 0 ≥ z ≥ 0. (29)

The objective function of (29) is same as the original LP.

Upper bounds of 0 have been imposed on z from Phase I.

The original LP is equivalent to (29), because any solution
(and indeed any feasible point) must have z = 0.

Need to retain the artificial variables z in Phase II, since some
components of z may still be present in the optimal basis
from Phase I that are used as the initial basis for (29).

Though off-course the values zj of these components must be
zero.
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EXAMPLE

Consider the inequality-constrained LP:

min 3x1 + x2 + x3 subject to

2x1 + x2 + x3 ≤ 2,

x1 − x2 − x3 ≤ −1,

x ≥ 0.

By adding slack variables to both inequality constraints, the
following equivalent problem in standard form can be obtained:

min 3x1 + x2 + x3 subject to

2x1 + x2 + x3 + x4 = 2,

x1 − x2 − x3 + x5 = −1,

x ≥ 0.
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EXAMPLE

The vector x = (0, 0, 0, 2, 0) is feasible with respect to the
first linear constraint and the lower bound x ≥ 0.

It does not satisfy the second constraint.

Therefore, in forming the Phase-I problem, we add just a
single artificial variable z2 to the second constraint and obtain

min z2 subject to

2x1 + x2 + x3 + x4 = 2,

x1 − x2 − x3 + x5 − z2 = −1,

(x , z2) ≥ 0.

The vector (x , z2) = ((0, 0, 0, 2, 0), 1) is feasible with respect
to above problem.
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EXAMPLE

It is a basic feasible point, with the corresponding basis matrix
B

B =

[
1 0
0 −1

]

The variable x4 plays the role of artificial variable for the first
constraint.

There was no need to add an explicit artificial variable z1.
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DEGENERATE STEPS AND CYCLING

The simplex method may encounter situations in which for
the entering index q, we cannot set x+q any greater than zero
without violating the non-negativity condition x+ ≥ 0.

These situations arise when there is i with (xB)i = 0 and
di < 0.

Steps of this type are called degenerate steps.

On such steps, the components of x do not change and,
therefore, the objective function cT x does not decrease.

The steps may still be useful because they change the basis B
and the updated B may be closer to the optimal basis.

In other words, the degenerate step may be laying the
groundwork for reductions in cT x on later steps.
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DEGENERATE STEPS AND CYCLING

Sometimes, a phenomenon known as cycling can occur.

After a number of successive degenerate steps, we may return
to an earlier basis B.

If we continue to apply the algorithm from this point using
the same rules for selecting entering and leaving indices,

we will repeat the same cycle ad infinitum, never converging.

Once thought to be a rare phenomenon, in recent times
cycling is observed frequently in the large linear programs that
arise as relaxations of integer programming problems.

practical simplex codes usually incorporate a cycling avoidance
strategy.
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DEGENERATE STEPS AND CYCLING

Suppose that a degenerate basis is encountered at some
simplex iteration.

The basis is B̂ and the basis matrix is B̂.

A modified linear program is considered in which a small
perturbation to the right-hand side of the constraint of the
original LP is added as follows:

b(ε) = b + B̂



ε
ε2

.

.

.
εm


where ε is a very small positive number.
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DEGENERATE STEPS AND CYCLING

This perturbation in b induces a perturbation in the
components of the basic solution vector;

xB̂(ε) = xB̂ +



ε
ε2

.

.

.
εm
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DEGENERATE STEPS AND CYCLING

Retaining the perturbation for subsequent iterations, we see that
subsequent basic solutions have the form:

xB(ε) = xB + B−1B̂



ε
ε2

.

.

.
εm

 = xB +
m∑

k=1

(B−1B̂)kε
k ,

where (B−1B̂)k denote the kth column of B−1B̂ and xB is the
basic solution of the unperturbed right-hand side b.
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DEGENERATE STEPS AND CYCLING

For all ε sufficiently small (but positive), (xB̂(ε))i > 0 for all i .

Hence, the basis is non-degenerate for the perturbed problem.

We can perform a step of the simplex method that produces a
nonzero (but tiny) decrease in the objective.

If we retain the perturbation over all subsequent iterations,
and provided that the initial choice of ε was small enough, all
subsequent bases visited by the algorithm are non-degenerate.

Therefore, we conclude that, provided the initial choice of ε is
sufficiently small to ensure non-degeneracy of all subsequent
bases, no basis is visited more than once by the simplex
method.
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DEGENERATE STEPS AND CYCLING

The method terminates finitely at a solution of the perturbed
problem.

The perturbation can be removed in a post-processing phase,
by resetting xB = B−1b for the final basis B and the original
right-hand side b.

How to choose ε small enough at the point at which the
original degenerate basis B̂ is encountered.

The lexicographic strategy finesses this issue by not making
an explicit choice of ε but rather keeping track of the
dependence of each basic variable on each power of ε.

When it comes to selecting the leaving variable, it chooses the
index p that minimises (xB(ε))i/di over all variables in the
basis, for all sufficiently small ε.
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Simplex

The simplex method is very efficient in practice.

It typically requires 2m to 3m iterations.

But it does have a worst-case complexity that is exponential
in n.
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