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Non-linear Constrained Problem

Consider the general constrained optimization problem:
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@ f is the objective function.

@ ¢;: G CR" — R smooth,

@ . and & are the finite index sets of inequality and equality
constraints.

@ We focus on fundamental concepts and building blocks that
are common to more than one algorithm.
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Special cases (for which specialized algorithms exist):

e Linear programming (LP): f, all ¢; linear; solved by simplex &
interior-point methods.

e Quadratic programming (QP): f quadratic, all ¢; linear.

@ Linearly constrained optimization: all ¢; linear.

@ Bound-constrained optimization: constraints are only of the
form x; > I; or x; < u;.

o Convex programming: f convex, equality ¢; linear, inequality

Cj concave.
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Categorization of algorithms

Quadratic programming:

e for solving quadratic programming problems its particular
characteristics can be exploited by efficient algorithms,

@ quadratic programming sub-problems need to be solved by
sequential quadratic programming methods and certain
interior-point methods for non-linear programming.

o Consist of active set, interior-point, and gradient projection
methods.
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Categorisation of algorithms

Penalty and augmented Lagrangian methods

@ Combining the objective function and constraints into a
penalty function ¢(x; i), attack problem (1) by solving a
sequence of unconstrained problems.

@ 1 is called the penalty parameter pu > 0.

@ e.g. if only equality constraints exist:

B(xipn) = F()+ 5" cilx)

ie&

@ Minimise this unconstrained function, for a series of increasing
values of u, until the solution of the constrained optimisation
problem is identified to sufficient accuracy.
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Categorisation of algorithms

Penalty methods

@ If we use an exact penalty function, it may be possible to find
a local solution of by solving a single unconstrained
optimisation problem.

@ For the equality-constrained problem, the function defined by

S(xip) = F(x) +p ) lai(x)|

i€e&
is usually an exact penalty function, for a sufficiently large
value of u > 0.
@ Although they often are non-differentiable.

@ Exact penalty functions can be minimised by solving a
sequence of smooth sub-problems.
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Categorisation of algorithms

Augmented Lagrangian methods:

@ Define a function that combines the Lagrangian and a
quadratic penalty.

@ Example if only equality constraints exist:

La(x, A\ p) = f(x) — Z)\ici(x) + % Z i (x)

ie& ic&

@ Methods based on this function fix A to some estimate of the
optimal Lagrange multiplier vector and fix p to some positive
value, then find a value of x that approximately minimises
La(-s A ).

@ At this new x-iterate, A and p may be updated; then the
process is repeated.
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Categorisation of algorithms

sequential quadratic programming (SQP) methods:

@ Model (1) by a quadratic programming subproblem at each
iterate and define the search direction to be the solution of

this subproblem.

@ The basic SQP method, defines the search direction pj at the
iterate (xx, Ax) to be the solution of

1
min EpTV)%XD?(Xk, M)p+ V) p

subject to Vc,-(xk)Tp+ ci(xk) =0, i € &,
Veilx) p+ci(x) >0, i €7,

@ .7 is the Lagrangian function.
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Categorisation of algorithms

sequential quadratic programming (SQP) methods:

@ The objective in this subproblem is an approximation to the
change in the Lagrangian function in moving from x; to
Xk =+ p.

@ While the constraints are linearisations of the constraints in

(1).
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ELIMINATION OF VARIABLES

@ Obtain a simpler problem with fewer degrees of freedom, by
using the constraints to eliminate some of the variables from
the problem.

@ Elimination techniques must be used with care, as they may
alter the problem or introduce ill conditioning.

o Example

min f(x) = f(x1,x2,x3,X) subject to x; + X3 — xgx3 = 0,
—xy 4+ x4 + 55 =0,
there is no risk in setting
x| = —xg + x4x3, and xp = x4 + Xg,
to obtain a function of two variables
h(xs, xa) = f(xax3 — x2, x4 + X3, X3, Xa)

which can be minimised using the unconstrained optimisation

FarhniAN T A
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Dangers of Nonlinear Elimination

o Example Consider the problem

min x2 4 y2 subject to (x — 1) = 2.

(1,0)

-
N

Figure: The danger of nonlinear elimination.
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Dangers of Nonlinear Elimination

Attempt to solve this problem by eliminating y

h(x) = x*> 4+ (x — 1)3

h(x) — —o0 as x = —©
By blindly applying this transformation we may conclude that
the problem is unbounded.

Ignores the fact that the constraint (x — 1)3 = y? implicitly
imposes the bound x > 1.

If we wish to eliminate y, we should explicitly introduce the
bound x > 1 into the problem.
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

@ Non-linear function subject to a set of linear equality
constraints

min f(x) subject to Ax = b, (2)

Ais m x n matrix m < n.

@ Let A has full row rank.

@ If such is not the case, either the problem is inconsistent or
some of the constraints are redundant and can be deleted
without affecting the solution of the problem.

@ A subset of m columns of A can be found that is linearly
independent.

@ Gather these columns into an m x m matrix B and define n x n
permutation matrix P that swaps these columns to the first m

column positions in A,
AP = [B|N]



Fundamentals of Algorithms for Non-linear Constrained Optimisation
ELIMINATION OF VARIABLES

SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

@ N denotes the n — m remaining columns of A.
o Define the sub-vectors xg € R™ and xy € RVN=™ as:

call xg the basic variables and B the basis matrix.
e PPT = | — the constraint Ax = b as

b= Ax = AP(PTx) = Bxg + Nxy.

By rearranging this formula, the basic variables can be
expressed as
xg = B7'b— B 1 Nxy
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

@ Compute a feasible point for the constraints Ax = b by
choosing any value of xy and then setting xg according to the
previous formula.

@ The problem is therefore equivalent to the unconstrained
problem

min h(xy) =9€ 7 (P [B_lb - B_l’VX’VD (3)

XN XN

@ The expression for xg is referred to as simple elimination of
variables.

@ This discussion shows that a non-linear optimisation problem
with linear equality constraints is, the same as an
unconstrained problem.
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EXAMPLE

@ Consider the problem

. 1
min sin(xy + x2) + x32 + §(X4 + xé + x6/2)

subject to 8x3 —6x0 +x3 +9x4 +4x5 = 6
3x1 + 2xp — x4 + 6x5 + 4xg = —4.

(4)

@ Define the permutation matrix P to reorder the components
of x as xT = (x3, X6, X1, X2, X4, X5) | .

@ The coefficient matrix AP is

|1 0] 8 -6 9 4

AP = 04| 3 2 -16

@ Basis matrix B is diagonal.
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EXAMPLE

"]
X1
|:X3:| _[8 -6 9 4} X2 +[6]
e I
X5

@ By substituting for x3 and xg, the problem becomes

min sin(x1 + X2) + (8X1 — 6X2 + 9X4 + 4X5 — 6)2

X1,X2,X4,X5

306+ 3 — [(1/2) + (3/8)a + (1/4)0 — (1/8)x + (3/4)s]).
)
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

Assume that the coefficient matrix is already given so that the
basic columns appear in the first m positions, that is, P = /.
Any feasible point x for the linear constraints in Ax = b can
be written as:

[XB] — x = Yb+ Zxy
XN

B! BN
O A
@ Z has n — m linearly independent columns (because of the
presence of the identity matrix in the lower block) and it

satisfies AZ = 0.
Therefore, Z is a basis for the null space of A.
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

@ The columns of Y and the columns of Z form a linearly
independent set.

@ Yb is a particular solution of the linear constraints Ax = b.

@ In other words, the simple elimination technique expresses
feasible points as the sum of a particular solution of Ax = b
plus a displacement along the null space of the constraints.

@ More general elimination strategies do also exist catering to
different pathologies.
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EFFECT OF INEQUALITY CONSTRAINTS

@ Elimination of variables is not always beneficial if inequality
constraints are present alongside the equalities.

o If problem (4) had the additional constraint x > 0, then after
eliminating the variables x3 and xg, would lead to a problem
of minimising the function in subject to the constraints.

(x1, X2, xa,x5) > 0,
8x1 — 6x2 + 9x4 + 4x5 < 6,
(3/4)x + (1/2)x2 — (1/4)xa + (3/2)xs < —1.

@ Hence, the cost of eliminating the equality constraints is to
make the inequalities more complicated than the simple
bounds x > 0.
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Measuring Progress

@ An algorithm for solving the non-linear programming problem
generates a step that reduces the objective function but
increases the violation of the constraints.

@ Should we accept this step ?
@ Question is not easy to answer.

@ Look for a way to balance the twin (often competing) goals of
reducing the objective function and satisfying the constraints.

@ Merit functions and filters are two approaches for achieving
this balance.

@ A step p will be accepted only if it leads to a sufficient
reduction in the merit function ¢ or if it is acceptable to the
filter.
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MERIT FUNCTIONS

@ Unconstrained optimisation:the objective function f is the
natural choice for the merit function.

@ All the unconstrained optimisation methods described require
that f be decreased (non-increasing) at each step.

@ Methods for constrained optimisation in which the starting
point and all subsequent iterates satisfy all the constraints in
the problem, the objective function is still an appropriate
merit function.

@ But, algorithms that allow iterates to violate the constraints
require some means to assess the quality of the steps and
iterates.

@ The merit function in this case combines the objective with
measures of constraint violation.
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MERIT FUNCTIONS

Exact Merit Function

A merit function ¢(x; 1) is exact if there is a positive scalar p*
such that for any p > p*, any local solution of the non-linear
programming problem is a local minimiser of ¢(x; u).

A popular choice of merit function for the non-linear programming
problem is the /; penalty function.

i penalty function

D10 1) = F() + 1 Y1)+ Yla(l ™ (6)

€& 184

where [z]” = max{0, —z}. The positive scalar (x is the penalty
parameter, which determines the weight that we assign to
constraint satisfaction relative to minimisation of the objective.
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MERIT FUNCTIONS

@ The /i merit function ¢ is not differentiable because of the
presence of the absolute value and [.]~ functions, but it is
exact.

@ It is exact for u* = largest Lagrange multiplier (in absolute
value) associated with an optimal solution.

@ Many algorithms using this function adjust p heuristically to
ensure p > p* (but not too large).

@ It is inexpensive to evaluate but it may reject steps that make
good progress toward the solution (Maratos effect)
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MERIT FUNCTIONS

Fletcher's augmented Lagrangian

when only equality constraints c(x) = 0 exist:
L
SF(xi 1) = F(x) = A(x) " e(x) + S [le()I[3 (7)
where A(x) is the Jacobian of ¢(x) and

A(x) = (A(x)A(x)T)LA(x)VF(x) are the least squares
multipliers’ estimates.

o It is differentiable and exact and does not suffer from the
Maratos effect.

@ But, since it requires the solution of a linear system to obtain
A(x), it is expensive to evaluate; and may be ill-conditioned or
not defined.
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