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Non-linear Constrained Problem

Consider the general constrained optimization problem:

min
x∈Rn

f (x) subject to

{
ci (x) = 0, i ∈ E

ci (x) ≥ 0, i ∈ I
(1)

f is the objective function.

ci : G ⊂ Rn → R smooth,

I and E are the finite index sets of inequality and equality
constraints.

We focus on fundamental concepts and building blocks that
are common to more than one algorithm.
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Special cases (for which specialized algorithms exist):

Linear programming (LP): f , all ci linear; solved by simplex &
interior-point methods.

Quadratic programming (QP): f quadratic, all ci linear.

Linearly constrained optimization: all ci linear.

Bound-constrained optimization: constraints are only of the
form xi ≥ li or xi ≤ ui .

Convex programming: f convex, equality ci linear, inequality
ci concave.
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Categorization of algorithms

Quadratic programming:

for solving quadratic programming problems its particular
characteristics can be exploited by efficient algorithms,

quadratic programming sub-problems need to be solved by
sequential quadratic programming methods and certain
interior-point methods for non-linear programming.

Consist of active set, interior-point, and gradient projection
methods.
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Categorisation of algorithms

Penalty and augmented Lagrangian methods

Combining the objective function and constraints into a
penalty function ϕ(x ;µ), attack problem (1) by solving a
sequence of unconstrained problems.

µ is called the penalty parameter µ > 0.

e.g. if only equality constraints exist:

ϕ(x ;µ) = f (x) +
µ

2

∑
i∈E

ci (x)
2

Minimise this unconstrained function, for a series of increasing
values of µ, until the solution of the constrained optimisation
problem is identified to sufficient accuracy.
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Categorisation of algorithms

Penalty methods

If we use an exact penalty function, it may be possible to find
a local solution of by solving a single unconstrained
optimisation problem.

For the equality-constrained problem, the function defined by

ϕ(x ;µ) = f (x) + µ
∑
i∈E

|ci (x)|

is usually an exact penalty function, for a sufficiently large
value of µ > 0.

Although they often are non-differentiable.

Exact penalty functions can be minimised by solving a
sequence of smooth sub-problems.
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Categorisation of algorithms

Augmented Lagrangian methods:

Define a function that combines the Lagrangian and a
quadratic penalty.

Example if only equality constraints exist:

LA(x , λ;µ) = f (x)−
∑
i∈E

λici (x) +
µ

2

∑
i∈E

c2i (x)

Methods based on this function fix λ to some estimate of the
optimal Lagrange multiplier vector and fix µ to some positive
value, then find a value of x that approximately minimises
LA(., λ;µ).

At this new x-iterate, λ and µ may be updated; then the
process is repeated.
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Categorisation of algorithms

sequential quadratic programming (SQP) methods:

Model (1) by a quadratic programming subproblem at each
iterate and define the search direction to be the solution of
this subproblem.

The basic SQP method, defines the search direction pk at the
iterate (xk , λk) to be the solution of

min
p

1

2
pT∇2

xxL (xk , λk)p +∇f (xk)
Tp

subject to ∇ci (xk)
Tp + ci (xk) = 0, i ∈ E ,

∇ci (xk)
Tp + ci (xk) ≥ 0, i ∈ I ,

L is the Lagrangian function.
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Categorisation of algorithms

sequential quadratic programming (SQP) methods:

The objective in this subproblem is an approximation to the
change in the Lagrangian function in moving from xk to
xk + p.

While the constraints are linearisations of the constraints in
(1).
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ELIMINATION OF VARIABLES

Obtain a simpler problem with fewer degrees of freedom, by
using the constraints to eliminate some of the variables from
the problem.
Elimination techniques must be used with care, as they may
alter the problem or introduce ill conditioning.
Example

min f (x) = f (x1, x2, x3, x4) subject to x1 + x23 − x4x3 = 0,

−x2 + x4 + x23 = 0,

there is no risk in setting

x1 = −x23 + x4x3, and x2 = x4 + x23 ,

to obtain a function of two variables

h(x3, x4) = f (x4x3 − x23 , x4 + x23 , x3, x4)

which can be minimised using the unconstrained optimisation
techniques.
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Dangers of Nonlinear Elimination

Example Consider the problem

min x2 + y2 subject to (x − 1)3 = y2.

Figure: The danger of nonlinear elimination.
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Dangers of Nonlinear Elimination

Attempt to solve this problem by eliminating y

h(x) = x2 + (x − 1)3

h(x) → −∞ as x → −∞
By blindly applying this transformation we may conclude that
the problem is unbounded.

Ignores the fact that the constraint (x − 1)3 = y2 implicitly
imposes the bound x ≥ 1.

If we wish to eliminate y , we should explicitly introduce the
bound x ≥ 1 into the problem.
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

Non-linear function subject to a set of linear equality
constraints

min f (x) subject to Ax = b, (2)

A is m × n matrix m ≤ n.

Let A has full row rank.

If such is not the case, either the problem is inconsistent or
some of the constraints are redundant and can be deleted
without affecting the solution of the problem.
A subset of m columns of A can be found that is linearly
independent.
Gather these columns into an m ×m matrix B and define n × n
permutation matrix P that swaps these columns to the first m
column positions in A,

AP = [B|N]
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

N denotes the n −m remaining columns of A.

Define the sub-vectors xB ∈ Rm and xN ∈ RN−m as:[
xB
xN

]
= PT x ,

call xB the basic variables and B the basis matrix.

PPT = I =⇒ the constraint Ax = b as

b = Ax = AP(PT x) = BxB + NxN .

By rearranging this formula, the basic variables can be
expressed as

xB = B−1b − B−1NxN
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

Compute a feasible point for the constraints Ax = b by
choosing any value of xN and then setting xB according to the
previous formula.

The problem is therefore equivalent to the unconstrained
problem

min
xN

h(xN) =
def f

(
P

[
B−1b − B−1NxN

xN

])
(3)

The expression for xB is referred to as simple elimination of
variables.

This discussion shows that a non-linear optimisation problem
with linear equality constraints is, the same as an
unconstrained problem.
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EXAMPLE

Consider the problem

min sin(x1 + x2) + x23 +
1

3
(x4 + x45 + x6/2)

subject to 8x1 − 6x2 + x3 + 9x4 + 4x5 = 6

3x1 + 2x2 − x4 + 6x5 + 4x6 = −4.

(4)

Define the permutation matrix P to reorder the components
of x as xT = (x3, x6, x1, x2, x4, x5)

T .

The coefficient matrix AP is

AP =

[
1 0 | 8 −6 9 4
0 4 | 3 2 −1 6

]

Basis matrix B is diagonal.
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EXAMPLE

[
x3
x6

]
= −

[
8 −6 9 4
3
4

1
2 −1

4
3
2

]
x1
x2
x4
x5

+

[
6
−1

]

By substituting for x3 and x6, the problem becomes

min
x1,x2,x4,x5

sin(x1 + x2) + (8x1 − 6x2 + 9x4 + 4x5 − 6)2

+
1

3
(x4 + x45 − [(1/2) + (3/8)x1 + (1/4)x2 − (1/8)x4 + (3/4)x5]).

(5)
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

Assume that the coefficient matrix is already given so that the
basic columns appear in the first m positions, that is, P = I .

Any feasible point x for the linear constraints in Ax = b can
be written as: [

xB
xN

]
= x = Yb + ZxN

Y =

[
B−1

0

]
, Z =

[
−B−1N

I

]
Z has n −m linearly independent columns (because of the
presence of the identity matrix in the lower block) and it
satisfies AZ = 0.

Therefore, Z is a basis for the null space of A.
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SIMPLE ELIMINATION USING LINEAR
CONSTRAINTS

The columns of Y and the columns of Z form a linearly
independent set.

Yb is a particular solution of the linear constraints Ax = b.

In other words, the simple elimination technique expresses
feasible points as the sum of a particular solution of Ax = b
plus a displacement along the null space of the constraints.

More general elimination strategies do also exist catering to
different pathologies.
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EFFECT OF INEQUALITY CONSTRAINTS

Elimination of variables is not always beneficial if inequality
constraints are present alongside the equalities.

If problem (4) had the additional constraint x ≥ 0, then after
eliminating the variables x3 and x6, would lead to a problem
of minimising the function in subject to the constraints.

(x1, x2, x4, x5) ≥ 0,

8x1 − 6x2 + 9x4 + 4x5 ≤ 6,

(3/4)x1 + (1/2)x2 − (1/4)x4 + (3/2)x5 ≤ −1.

Hence, the cost of eliminating the equality constraints is to
make the inequalities more complicated than the simple
bounds x ≥ 0.
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Measuring Progress

An algorithm for solving the non-linear programming problem
generates a step that reduces the objective function but
increases the violation of the constraints.

Should we accept this step ?

Question is not easy to answer.

Look for a way to balance the twin (often competing) goals of
reducing the objective function and satisfying the constraints.

Merit functions and filters are two approaches for achieving
this balance.

A step p will be accepted only if it leads to a sufficient
reduction in the merit function ϕ or if it is acceptable to the
filter.
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MERIT FUNCTIONS

Unconstrained optimisation:the objective function f is the
natural choice for the merit function.

All the unconstrained optimisation methods described require
that f be decreased (non-increasing) at each step.

Methods for constrained optimisation in which the starting
point and all subsequent iterates satisfy all the constraints in
the problem, the objective function is still an appropriate
merit function.

But, algorithms that allow iterates to violate the constraints
require some means to assess the quality of the steps and
iterates.

The merit function in this case combines the objective with
measures of constraint violation.
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MERIT FUNCTIONS

Exact Merit Function

A merit function ϕ(x ;µ) is exact if there is a positive scalar µ∗

such that for any µ > µ∗, any local solution of the non-linear
programming problem is a local minimiser of ϕ(x ;µ).

A popular choice of merit function for the non-linear programming
problem is the l1 penalty function.

l1 penalty function

ϕ1(x ;µ) = f (x) + µ
∑
i∈E

|ci (x)|+ µ
∑
i∈I

[ci (x)]
−, (6)

where [z ]− = max{0,−z}. The positive scalar µ is the penalty
parameter, which determines the weight that we assign to
constraint satisfaction relative to minimisation of the objective.
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MERIT FUNCTIONS

The l1 merit function ϕ1 is not differentiable because of the
presence of the absolute value and [.]− functions, but it is
exact.

It is exact for µ∗ = largest Lagrange multiplier (in absolute
value) associated with an optimal solution.

Many algorithms using this function adjust µ heuristically to
ensure µ > µ∗ (but not too large).

It is inexpensive to evaluate but it may reject steps that make
good progress toward the solution (Maratos effect)
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MERIT FUNCTIONS

Fletcher’s augmented Lagrangian

when only equality constraints c(x) = 0 exist:

ϕF (x ;µ) = f (x)− λ(x)T c(x) +
µ

2
||c(x)||22 (7)

where A(x) is the Jacobian of c(x) and
λ(x) = (A(x)A(x)T )−1A(x)∇f (x) are the least squares
multipliers’ estimates.

It is differentiable and exact and does not suffer from the
Maratos effect.

But, since it requires the solution of a linear system to obtain
λ(x), it is expensive to evaluate; and may be ill-conditioned or
not defined.
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