Fundamentals of Algorithms for Non-linear Constrained Optimisation

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

April 22, 2024

Non-linear Constrained Problem

Consider the general constrained optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) &= 0, \quad i \in \mathscr{E} \\ c_i(x) &\geq 0, \quad i \in \mathscr{I} \end{cases}$$
(1)

- *f* is the objective function.
- $c_i: G \subset \mathbb{R}^n \to \mathbb{R}$ smooth,
- \bullet $\mathscr I$ and $\mathscr E$ are the finite index sets of inequality and equality constraints.
- We focus on fundamental concepts and building blocks that are common to more than one algorithm.

Special cases (for which specialized algorithms exist):

- *Linear programming (LP): f*, all *c_i* linear; solved by simplex & interior-point methods.
- Quadratic programming (QP): f quadratic, all c_i linear.
- Linearly constrained optimization: all c_i linear.
- Bound-constrained optimization: constraints are only of the form x_i ≥ l_i or x_i ≤ u_i.
- *Convex programming: f* convex, equality *c_i* linear, inequality *c_i* concave.

Fundamentals of Algorithms for Non-linear Constrained Optimisation

Lists in Beamer

Categorization of algorithms

Quadratic programming:

- for solving quadratic programming problems its particular characteristics can be exploited by efficient algorithms,
- quadratic programming sub-problems need to be solved by sequential quadratic programming methods and certain interior-point methods for non-linear programming.
- Consist of active set, interior-point, and gradient projection methods.

Categorisation of algorithms

Penalty and augmented Lagrangian methods

- Combining the objective function and constraints into a penalty function $\phi(x; \mu)$, attack problem (1) by solving a sequence of unconstrained problems.
- μ is called the penalty parameter $\mu > 0$.
- e.g. if only equality constraints exist:

$$\phi(x;\mu) = f(x) + \frac{\mu}{2} \sum_{i \in \mathscr{E}} c_i(x)^2$$

 Minimise this unconstrained function, for a series of increasing values of μ, until the solution of the constrained optimisation problem is identified to sufficient accuracy.

Categorisation of algorithms

Penalty methods

- If we use an exact penalty function, it may be possible to find a local solution of by solving a single unconstrained optimisation problem.
- For the equality-constrained problem, the function defined by

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathscr{E}} |c_i(x)|$$

is usually an exact penalty function, for a sufficiently large value of $\mu > {\rm 0}.$

- Although they often are non-differentiable.
- Exact penalty functions can be minimised by solving a sequence of smooth sub-problems.

Categorisation of algorithms

Augmented Lagrangian methods:

- Define a function that combines the Lagrangian and a quadratic penalty.
- Example if only equality constraints exist:

$$\mathscr{L}_{A}(x,\lambda;\mu) = f(x) - \sum_{i \in \mathscr{E}} \lambda_{i} c_{i}(x) + \frac{\mu}{2} \sum_{i \in \mathscr{E}} c_{i}^{2}(x)$$

- Methods based on this function fix λ to some estimate of the optimal Lagrange multiplier vector and fix μ to some positive value, then find a value of x that approximately minimises L_A(., λ; μ).
- At this new x-iterate, λ and μ may be updated; then the process is repeated.

Categorisation of algorithms

sequential quadratic programming (SQP) methods:

- Model (1) by a quadratic programming subproblem at each iterate and define the search direction to be the solution of this subproblem.
- The basic SQP method, defines the search direction p_k at the iterate (x_k, λ_k) to be the solution of

$$\begin{split} \min_{p} \ &\frac{1}{2} p^{T} \nabla_{xx}^{2} \mathscr{L}(x_{k},\lambda_{k}) p + \nabla f(x_{k})^{T} p \\ \text{subject to } \nabla c_{i}(x_{k})^{T} p + c_{i}(x_{k}) = 0, \ i \in \mathscr{E}, \\ &\nabla c_{i}(x_{k})^{T} p + c_{i}(x_{k}) \geq 0, \ i \in \mathscr{I}, \end{split}$$

• \mathscr{L} is the Lagrangian function.

Fundamentals of Algorithms for Non-linear Constrained Optimisation

Lists in Beamer

Categorisation of algorithms

sequential quadratic programming (SQP) methods:

- The objective in this subproblem is an approximation to the change in the Lagrangian function in moving from x_k to x_k + p.
- While the constraints are linearisations of the constraints in (1).

ELIMINATION OF VARIABLES

- Obtain a simpler problem with fewer degrees of freedom, by using the constraints to eliminate some of the variables from the problem.
- Elimination techniques must be used with care, as they may alter the problem or introduce ill conditioning.
- Example

min
$$f(x) = f(x_1, x_2, x_3, x_4)$$
 subject to $x_1 + x_3^2 - x_4 x_3 = 0$,
 $-x_2 + x_4 + x_3^2 = 0$,

there is no risk in setting

$$x_1 = -x_3^2 + x_4 x_3$$
, and $x_2 = x_4 + x_3^2$,

to obtain a function of two variables

$$h(x_3, x_4) = f(x_4x_3 - x_3^2, x_4 + x_3^2, x_3, x_4)$$

which can be minimised using the unconstrained optimisation techniques

Fundamentals of Algorithms for Non-linear Constrained Optimisation ELIMINATION OF VARIABLES

Dangers of Nonlinear Elimination

• Example Consider the problem

min
$$x^2 + y^2$$
 subject to $(x - 1)^3 = y^2$

Figure: The danger of nonlinear elimination.

Dangers of Nonlinear Elimination

• Attempt to solve this problem by eliminating y

$$h(x) = x^2 + (x-1)^3$$

•
$$h(x) \to -\infty$$
 as $x \to -\infty$

- By blindly applying this transformation we may conclude that the problem is unbounded.
- Ignores the fact that the constraint $(x 1)^3 = y^2$ implicitly imposes the bound $x \ge 1$.
- If we wish to eliminate y, we should explicitly introduce the bound x ≥ 1 into the problem.

Non-linear function subject to a set of linear equality constraints

min
$$f(x)$$
 subject to $Ax = b$, (2)

A is $m \times n$ matrix $m \leq n$.

- Let A has full row rank.
- If such is not the case, either the problem is inconsistent or some of the constraints are redundant and can be deleted without affecting the solution of the problem.
- A subset of *m* columns of *A* can be found that is linearly independent.
- Gather these columns into an $m \times m$ matrix B and define $n \times n$ permutation matrix P that swaps these columns to the first m column positions in A,

$$AP = [B|N]$$

- N denotes the n m remaining columns of A.
- Define the sub-vectors $x_B \in \mathbb{R}^m$ and $x_N \in \mathbb{R}^{N-m}$ as:

$$\begin{bmatrix} x_B \\ x_N \end{bmatrix} = P^T x,$$

- call x_B the basic variables and B the basis matrix.
- $PP^T = I \implies$ the constraint Ax = b as

$$b = Ax = AP(P^T x) = Bx_B + Nx_N.$$

• By rearranging this formula, the basic variables can be expressed as

$$x_B = B^{-1}b - B^{-1}Nx_N$$

- Compute a feasible point for the constraints Ax = b by choosing any value of x_N and then setting x_B according to the previous formula.
- The problem is therefore equivalent to the unconstrained problem

$$\min_{x_N} h(x_N) = \operatorname{def} f\left(P\left[\begin{array}{c}B^{-1}b - B^{-1}Nx_N\\x_N\end{array}\right]\right)$$
(3)

- The expression for *x_B* is referred to as simple elimination of variables.
- This discussion shows that a non-linear optimisation problem with linear equality constraints is, the same as an unconstrained problem.

Fundamentals of Algorithms for Non-linear Constrained Optimisation ELIMINATION OF VARIABLES

EXAMPLE

• Consider the problem

min
$$sin(x_1 + x_2) + x_3^2 + \frac{1}{3}(x_4 + x_5^4 + x_6/2)$$

subject to $8x_1 - 6x_2 + x_3 + 9x_4 + 4x_5 = 6$ (4)
 $3x_1 + 2x_2 - x_4 + 6x_5 + 4x_6 = -4.$

- Define the permutation matrix P to reorder the components of x as x^T = (x₃, x₆, x₁, x₂, x₄, x₅)^T.
- The coefficient matrix AP is

$$AP = egin{bmatrix} 1 & 0 & | & 8 & -6 & 9 & 4 \ 0 & 4 & | & 3 & 2 & -1 & 6 \end{bmatrix}$$

• Basis matrix B is diagonal.

Fundamentals of Algorithms for Non-linear Constrained Optimisation ELIMINATION OF VARIABLES

EXAMPLE

۲

$$\begin{bmatrix} x_3 \\ x_6 \end{bmatrix} = -\begin{bmatrix} 8 & -6 & 9 & 4 \\ \frac{3}{4} & \frac{1}{2} & -\frac{1}{4} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 6 \\ -1 \end{bmatrix}$$

• By substituting for x_3 and x_6 , the problem becomes

$$\min_{x_1, x_2, x_4, x_5} \sin(x_1 + x_2) + (8x_1 - 6x_2 + 9x_4 + 4x_5 - 6)^2 + \frac{1}{3}(x_4 + x_5^4 - [(1/2) + (3/8)x_1 + (1/4)x_2 - (1/8)x_4 + (3/4)x_5]).$$
(5)

SIMPLE ELIMINATION USING LINEAR CONSTRAINTS

- Assume that the coefficient matrix is already given so that the basic columns appear in the first m positions, that is, P = I.
- Any feasible point x for the linear constraints in Ax = b can be written as:

$$\begin{bmatrix} x_B \\ x_N \end{bmatrix} = x = Yb + Zx_N$$

$$Y = \begin{bmatrix} B^{-1} \\ 0 \end{bmatrix}, \qquad Z = \begin{bmatrix} -B^{-1}N \\ I \end{bmatrix}$$

- Z has n m linearly independent columns (because of the presence of the identity matrix in the lower block) and it satisfies AZ = 0.
- Therefore, Z is a basis for the null space of A.

- The columns of Y and the columns of Z form a linearly independent set.
- Yb is a particular solution of the linear constraints Ax = b.
- In other words, the simple elimination technique expresses feasible points as the sum of a particular solution of Ax = b plus a displacement along the null space of the constraints.
- More general elimination strategies do also exist catering to different pathologies.

EFFECT OF INEQUALITY CONSTRAINTS

- Elimination of variables is not always beneficial if inequality constraints are present alongside the equalities.
- If problem (4) had the additional constraint x ≥ 0, then after eliminating the variables x₃ and x₆, would lead to a problem of minimising the function in subject to the constraints.

$$egin{aligned} & (x_1, x_2, x_4, x_5) \geq 0, \ & 8x_1 - 6x_2 + 9x_4 + 4x_5 \leq 6, \ & (3/4)x_1 + (1/2)x_2 - (1/4)x_4 + (3/2)x_5 \leq -1. \end{aligned}$$

 Hence, the cost of eliminating the equality constraints is to make the inequalities more complicated than the simple bounds x ≥ 0.

Measuring Progress

- An algorithm for solving the non-linear programming problem generates a step that reduces the objective function but increases the violation of the constraints.
- Should we accept this step ?
- Question is not easy to answer.
- Look for a way to balance the twin (often competing) goals of reducing the objective function and satisfying the constraints.
- Merit functions and filters are two approaches for achieving this balance.
- A step p will be accepted only if it leads to a sufficient reduction in the merit function ϕ or if it is acceptable to the filter.

- Unconstrained optimisation: the objective function *f* is the natural choice for the merit function.
- All the unconstrained optimisation methods described require that *f* be decreased (non-increasing) at each step.
- Methods for constrained optimisation in which the starting point and all subsequent iterates satisfy all the constraints in the problem, the objective function is still an appropriate merit function.
- But, algorithms that allow iterates to violate the constraints require some means to assess the quality of the steps and iterates.
- The merit function in this case combines the objective with measures of constraint violation.

Exact Merit Function

A merit function $\phi(x; \mu)$ is exact if there is a positive scalar μ^* such that for any $\mu > \mu^*$, any local solution of the non-linear programming problem is a local minimiser of $\phi(x; \mu)$.

A popular choice of merit function for the non-linear programming problem is the l_1 penalty function.

I_1 penalty function

$$\phi_1(x;\mu) = f(x) + \mu \sum_{i \in \mathscr{E}} |c_i(x)| + \mu \sum_{i \in \mathscr{I}} [c_i(x)]^-,$$
(6)

where $[z]^- = \max\{0, -z\}$. The positive scalar μ is the penalty parameter, which determines the weight that we assign to constraint satisfaction relative to minimisation of the objective.

- The l_1 merit function ϕ_1 is not differentiable because of the presence of the absolute value and $[.]^-$ functions, but it is exact.
- It is exact for $\mu^* =$ largest Lagrange multiplier (in absolute value) associated with an optimal solution.
- Many algorithms using this function adjust μ heuristically to ensure $\mu > \mu^*$ (but not too large).
- It is inexpensive to evaluate but it may reject steps that make good progress toward the solution (Maratos effect)

Fletcher's augmented Lagrangian

when only equality constraints c(x) = 0 exist:

$$\phi_F(x;\mu) = f(x) - \lambda(x)^T c(x) + \frac{\mu}{2} ||c(x)||_2^2$$
(7)

where A(x) is the Jacobian of c(x) and $\lambda(x) = (A(x)A(x)^T)^{-1}A(x)\nabla f(x)$ are the least squares multipliers' estimates.

- It is differentiable and exact and does not suffer from the Maratos effect.
- But, since it requires the solution of a linear system to obtain λ(x), it is expensive to evaluate; and may be ill-conditioned or not defined.