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Unconstrained Optimisation

@ Minimise an objective function that depends on real variables.

@ No restriction on the values of these variables (no constraints).

mxin f(x)

where, x e R", n > 1.

f:R" =R is smooth

In a real world scenario

@ The objective function " f" might not be known globally everywhere.

Ideally, may have finitely many values of " f” or some derivatives of " f".

@ Any information for " " at arbitrary points usually do-not come very
cheaply.

@ Therefore, one should prefer for algorithms which do-not demand the

same, unnecessarily.
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Example

@ Suppose we are trying to
find a curve that fits
some experimental data.

o (tj,yi), yi signal is % .
measured at time ;. .
¥, .
@ Let's assume based on [ .

the knowledge of the
phenomenon under study R R -
we have the
understanding that the
signal has exponential
and oscillatory behaviour
of certain types.

Figure: Least squares data
fitting problem.
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Example

@ Choose the model function as
o(t, x) = x1 + xze_(’<3_t)2/x4 + x5 cos(xpt)

where x;'s are the parameters of the model.

@ What we want is the model should fit the observed data y;, as
closely as possible.

o Let x = (X17X2)X37X47X57X6)1
We define the residual for each y; as
=y —é(t,x), j=1,...,m.

@ We define the objective function as

min f(x) = r2(x) + ... 4 r2(x)
x€RS

This is a non-linear least square problem, a special case of
unconstrained optimisation.
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Example

@ Note that the equation of the objective function appears quite
expensive even for small number of variables

n==~

e say, if the no. of measurements i.e. m = 10°, then the
evaluation of f becomes quite a computational expense.

Lets Gain Some Perspective!!

@ Suppose for a given set of data the optimal solution to the
previous problem is approximately

x* =(1.1,0.01,1.2,1.5,2.0,1.5)

and the corresponding function value is f(x*) = 0.34.

@ As at the optimal point the objective is non-zero there must
be some discrepancy between the function values and the
observations made.
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Some Perspective

i.e. yj and ¢(tj,x*) aren’t the same for some or many
(vjs tj) < (8, x*)
@ The model hasn't produced all the data points correctly as

F(x*) #£0

Then how to know x* is indeed a minimiser of ?

In the sense that how to know which all points one should go
close to or not?

@ To answer this question, we need to define the term "solution
and explain how to recognise solutions.
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A point x* is a global minimiser of f if

f(x*) < f(x) VYxeR

or in the domain of interest.

@ It would be the most ideal scenario if we could find a global
minimiser.

o It might be difficult to get a global minimiser, owing to the
limited (or local) knowledge of f.

@ Most algorithms are only able to find a local minimiser.
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A point x* is called a local minimiser, if there is a neighbourhood A4 of
x* such that

f(x)<f(x) Vxe N

@ It's a points that achieves the smallest value of f in its
neighbourhood.

Weak Local Min- Strict (Strong) Local Min-

imiser imiser
f(x*) < f(x) xeN f(x*) < f(x) xE€N, x#x*
Example

@ For a constant function f(x) = 2 every point is a weak local
minimiser.

@ For f(x) = (x — 2)* x = 2 is a strict local minimiser.
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A point x* is called an isolated local minimiser if there is a

neighbourhood .4 of x* such that x* is the only local minimiser in
N

Example

f(x) = x*cos(1/x) +2x* f(0)=0

@ is twice continuously differentiable
@ has a strict local minimiser at x* =0

@ however, there are strict local minimisers at many nearby
points Xx;,
and x; — 0 as j — oo
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A Zoom plot of f(x) around x =0
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Figure: Showcases many strict local minimisers near x = 0.
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@ Some strict local minimisers are not isolated
@ All isolated local minimisers are strict

o It is often difficult to determine a global minimiser for an

algorithm, as it often gets trapped in a locality (at a local
minimiser)

Figure: Showcases a function with many local minimisers.
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How to detect minimisers?

@ The simplest test being
f‘/(x*) — 0

is very insufficient to speak anything about the globality of
the minimiser.

@ These cases (having a lot of local minimisers) is quite
standard for optimisation problems.

@ Global knowledge about a function f may help identify global
minima.

@ For convex functions local minimiser is also a global minimiser.
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Taylor's Theorem

Suppose that f : R” — R is continuously differentiable and that
p € R". Then we have

f(x +p)=f(x) + VFf(x+tp)"p for some t € (0,1)
Moreover, if f is twice continuously differentiable, we have
1
V(x4 p) = VF(x) +/ V2f(x + tp) p dt
0
and

1
f(x+p) = f(x)+Vf(x)Tp+§pTV2f(x+tp)p, for some t € (0,1)
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Taylor's Theorem Residual Form

Taylor's Theorem

Suppose that f : R” — R is a class of ©**1 on an open convex set S. If
aeSanda+ heSs, then

flat h)y= > 9 C’:( )ha+Rak(h)
jal<k

where the remainder is given in Lagrange's form by:

hOt
Rak(h) = Z 0%f(a+ ch)J for some ¢ € (0,1)
|a|=k+1 ’

and in the integral form by

Rok(h)=(k+1) > ha/ f(a+ th)dt

o) =k+1
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A bound for the Remainder of Taylor's Theorem

Multi-index Notation

A multi-index is an n-tuple of non-negative integers denoted by
(Greek alphabets) oo = (a1, g, ..., ap)

ol =a1+ax+...+ap

al =olal. .. a,!

x* = x{1x5% ... xp", x €R”
Plalf

9292 .. o2

O%F = 801052 ... 9 f =

If we know that |0%f(a + ch)| are bounded by some real number
M, for |a] = k + 1 on the interval ¢ € (0, 1), then
|h|k+1

’Ra,k(h)‘ < m
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Recognising A Local Minima

@ It seems the only way to conclude a point is a local minimum
is by comparing the functional values at every point.

@ However, if the function f is smooth, more efficient ways can
be thought of to identify local minima.

If x* is a local minimizer and f is continuously differentiable in an
open neighbourhood of x*, then

VF(x*) = 0.

Remark:

Therefore, for any point to be a minimiser of a function it has to
be a critical point.



Fundamentals of Unconstrained Optimisation

Lists in Beamer

First-Order Necessary Conditions

QOutline of Proof

By contradiction.
@ Let x* be a minimiser and Vf(x*) # 0.
Since Vf(x*) #0, let p = —Vf(x*), then

pTVF(x*) = —[|[VF(x)|? <0

@ Now, consider
g(x) == pTVF(x) = =(VF(x*))TVF(x)
— g(x*) = —[|VF(x)|]?

e Vf is continuous near x*, therefore g(x) is also continuous
near x*.
Jascalar T > 0 s.t.

g(x*+tp) <0  forallte]0, T]
— p  VF(x* + tp) < 0.
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First-Order Necessary Conditions

@ Now for any t € (0, T], we have from the Taylor's theorem
f(x* +tp) = F(x*) + tp" VF(x* + tp), te(0,7)
@ but,

pTVFf(x*+tp)<0 Vte(0,f)ast<T
= f(x* + tp) < f(x*) Vt € (0, T]
@ In a neighbourhood of x* 3 a direction along which a point

inside the neighbourhood has a value lesser than at x* which
contradicts the assumption that x* is a local minimiser.
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Stationary Point

Definition

A point x* is called a stationary point for f if

V£ (x*) = 0.

@ Any local minimiser must be a stationary point for smooth
functions.

@ B a matrix is positive definite if p” Bp > 0 for all vectors
p # 0.

@ positive semi-definite if p” Bp > 0 for all p.
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Second Order Necessary Conditions

If x* is a local minimiser of f and V2f exists and is continuous in
an open neighbourhood of x*, then

VF(x*) =0 and V2f(x*) is positive semi-definite.

Sketch of the Proof

e Vf(x*) =0 from the previous theorem.

o Assume that V2f(x*) is not positive semi-definite.

@ Therefore, 3 a vector p s.t.

pT V2 (x*)p <0
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Second Order Necessary Conditions

@ Now consider the function
g(x) = p ' V?F(x)p

o g(x*) < 0 and since V?f(x) is continuous around x*, g(x) is
continuous around x*

@ Therefore 3 T s.t. Vt € [0, T]

g(x* +tp) < 0.
— p ' V2f(x* + tp)p < 0.

o By doing a Taylor series expansion around x* we get
- - 1_
f(x* +tp) = F(x*) + tp T VF(x*) + 5t2pTv2f(x* + tp)p

vV te€ (0,T] and some t € (0, t)
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Second Order Necessary Conditions

@ Therefore,
- 1_
f(x* + tp) = f(x*) + Et2p7v2f(x* + tp)p
= f(x" 4+ p) < f(x¥)

@ which is a contradiction as x* is a minimiser and in the
direction p, the function value is less than that at x* in any
neighbourhood.
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Second Order Sufficient Conditions

Suppose that Vf is continuous in an open neighbourhood of x*
and that Vf(x*) = 0 and V2f(x*) is positive definite. Then x* is
a strict local minimiser of f.

Sketch of Proof

@ Let x* is not a minimiser.
@ For every neighbourhood of x*, 3 ||Ax|| > 0 s.t.

f(x* 4+ Ax) < f(x*)

1
or f(x* 4+ Ax) = f(x*) + AxVF(x*) + iAxTvzf(X*)Ax + Ro(Ax
o Consider the expression in the R.H.S

1
5A><Tv2f(x*)Ax + Ry(Ax)
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Second Order Sufficient Conditions

o Define h(x) = xTV2f(x*)x

e Since V2f(x*) is P.D. h(x) > 0 for x # 0.

@ Since h is continuous, on the compact set {x | ||x|| =1}, h
should attain its minimum value.

@ It has to be > 0. Say it be 5 >0

o Now look at the expression AxT V2f(x*)Ax, for ||Ax|| >0
we can multiply ﬁ to it and get

AxT

X
(") and H ‘ 1
|| Ax|] | Ax]| [|Ax]]
AxT Ax
= ———V?f(x*) > A

||Ax]] ||Ax]]
1 AxT Ax 1
= V2f(x*) > 2B
2 || Ax]] |Ax|| — 2
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. Ry(A
o Note that lim)|ax|0 ﬁ =0,
one can find a § > 0 s.t.

<1B

1

@ As a result for all 0 < Ax < d the expression in the R.H.S.
> 0.

@ Therefore, f(x* + Ax) > f(x*), which is a contradiction.

@ In conclusion x* is a unique local minimiser.

The Second order sufficient conditions are not necessary for a point
to be a strict local minimiser (without satisfying them as well)

f(x) = x* x* = 0 is a local minimiser, but V2f(x*) vanishes,
it is not P.D. .
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Global Minimiser for Convex Functions

When f is convex, any local minimiser x* is a global minimiser of
f. If in addition f is differentiable, then any stationary point x* is
a global minimiser of f.

Sketch of the proof

First Part
@ Suppose x* is a local, but not a global minimiser
@ Japoint z € R" s.t.

f(z) < f(x¥)
@ Consider the line segment that joins x* to z i.e.

x =Xz + (1—X\)x*, for some X € [0,1]
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Global Minimiser for Convex Functions

@ by convexity of f
f(x) <af(z)+ (1 —a)f(x*) < f(x*) VxeL

where L is the line segment.

@ Any neighbourhood of x* contains a piece of the line segment
so there will always be a point x € .4 at which the above
inequality is satisfied

° = x™ is not a local minimiser.
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Global Minimiser for Convex Functions

Second Part

@ Suppose x* is not a global minimiser and choose z as above.

Vix)T(z - x*) = if(x* + Az — x))|a=o0

Cd\

— lim f(x*+ Mz — x*)) — f(x*)
A—0 A

< lim M(z) + (1= N Ff(x*) — f(x*)

) A

=f(z) —f(x*) <0
= VIf(x*) #0, or x* is not a stationary point.
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