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Unconstrained Optimisation

Minimise an objective function that depends on real variables.

No restriction on the values of these variables (no constraints).

Mathematical Formulation:

min
x

f (x)

where, x ∈ Rn, n ≥ 1.
(1)

f : Rn → R is smooth

In a real world scenario
The objective function ”f ” might not be known globally everywhere.

Ideally, may have finitely many values of ”f ” or some derivatives of ”f ”.

Any information for ”f ” at arbitrary points usually do-not come very
cheaply.

Therefore, one should prefer for algorithms which do-not demand the
same, unnecessarily.
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Example

Suppose we are trying to
find a curve that fits
some experimental data.

(ti , yi ), yi signal is
measured at time ti .

Let’s assume based on
the knowledge of the
phenomenon under study
we have the
understanding that the
signal has exponential
and oscillatory behaviour
of certain types.

Figure: Least squares data
fitting problem.
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Example

Choose the model function as

ϕ(t, x) = x1 + x2e
−(x3−t)2/x4 + x5 cos(x6t)

where xi ’s are the parameters of the model.

What we want is the model should fit the observed data yj , as
closely as possible.

Let x = (x1, x2, x3, x4, x5, x6),
We define the residual for each yj as

rj = yj − ϕ(tj , x), j = 1, . . . ,m.

We define the objective function as

min
x∈R6

f (x) = r21 (x) + . . .+ r2m(x)

This is a non-linear least square problem, a special case of
unconstrained optimisation.
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Example

Note that the equation of the objective function appears quite
expensive even for small number of variables

n = 6

say, if the no. of measurements i.e. m = 105, then the
evaluation of f becomes quite a computational expense.

Lets Gain Some Perspective!!

Suppose for a given set of data the optimal solution to the
previous problem is approximately

x∗ = (1.1, 0.01, 1.2, 1.5, 2.0, 1.5)

and the corresponding function value is f (x∗) = 0.34.

As at the optimal point the objective is non-zero there must
be some discrepancy between the function values and the
observations made.
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Some Perspective

i.e. yj and ϕ(tj , x
∗) aren’t the same for some or many

(yj , tj)←→ ϕ(tj , x
∗)

The model hasn’t produced all the data points correctly as

f (x∗) ̸= 0

Then how to know x∗ is indeed a minimiser of f ?

In the sense that how to know which all points one should go
close to or not?

To answer this question, we need to define the term ”solution
and explain how to recognise solutions.
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What is a solution?

A point x∗ is a global minimiser of f if

f (x∗) ≤ f (x) ∀ x ∈ Rn

or in the domain of interest.

It would be the most ideal scenario if we could find a global
minimiser.

It might be difficult to get a global minimiser, owing to the
limited (or local) knowledge of f .

Most algorithms are only able to find a local minimiser.
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What is a solution?

Local Minimiser

A point x∗ is called a local minimiser, if there is a neighbourhood N of
x∗ such that

f (x∗) ≤ f (x) ∀ x ∈ N

It’s a points that achieves the smallest value of f in its
neighbourhood.

Weak Local Min-
imiser
f (x∗) ≤ f (x) x ∈ N

Strict (Strong) Local Min-
imiser
f (x∗) < f (x) x ∈ N , x ̸= x∗

Example

For a constant function f (x) = 2 every point is a weak local
minimiser.

For f (x) = (x − 2)4, x = 2 is a strict local minimiser.
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Isolated Local Minimiser

A point x∗ is called an isolated local minimiser if there is a
neighbourhood N of x∗ such that x∗ is the only local minimiser in
N .

Example

f (x) = x4 cos(1/x) + 2x4 f (0) = 0

is twice continuously differentiable

has a strict local minimiser at x∗ = 0

however, there are strict local minimisers at many nearby
points xj ,
and xj → 0 as j →∞
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A Zoom plot of f (x) around x = 0
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Figure: Showcases many strict local minimisers near x = 0.
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Some strict local minimisers are not isolated

All isolated local minimisers are strict

It is often difficult to determine a global minimiser for an
algorithm, as it often gets trapped in a locality (at a local
minimiser)

Figure: Showcases a function with many local minimisers.
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How to detect minimisers?

The simplest test being

f ′(x∗) = 0

is very insufficient to speak anything about the globality of
the minimiser.

These cases (having a lot of local minimisers) is quite
standard for optimisation problems.

Global knowledge about a function f may help identify global
minima.

For convex functions local minimiser is also a global minimiser.
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Taylor’s Theorem

Suppose that f : Rn → R is continuously differentiable and that
p ∈ Rn. Then we have

f (x + p) = f (x) +∇f (x + tp)Tp for some t ∈ (0, 1)

Moreover, if f is twice continuously differentiable, we have

∇f (x + p) = ∇f (x) +
∫ 1

0
∇2f (x + tp) p dt

and

f (x+p) = f (x)+∇f (x)Tp+1

2
pT∇2f (x+tp)p, for some t ∈ (0, 1).
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Taylor’s Theorem Residual Form

Taylor’s Theorem

Suppose that f : Rn → R is a class of C k+1 on an open convex set S. If
a ∈ S and a+ h ∈ S, then

f (a+ h) =
∑
|α|≤k

∂αf (x)

α!
hα + Ra,k(h)

where the remainder is given in Lagrange’s form by:

Ra,k(h) =
∑

|α|=k+1

∂αf (a+ ch)
hα

α!
for some c ∈ (0, 1)

and in the integral form by

Ra,k(h) = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0

(1− t)k∂αf (a+ th)dt
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A bound for the Remainder of Taylor’s Theorem

Multi-index Notation

A multi-index is an n-tuple of non-negative integers denoted by
(Greek alphabets) α = (α1, α2, . . . , αn)

|α| = α1 + α2 + . . .+ αn

α! = α1!α! . . . αn!

xα = xα1
1 xα2

2 . . . xαn
n , x ∈ Rn

∂αf = ∂α1
1 ∂α2

2 . . . ∂αn
n f =

∂|α|f

∂α1
x1 ∂

α2
x2 . . . ∂αn

xn

If we know that |∂αf (a+ ch)| are bounded by some real number
M, for |α| = k + 1 on the interval c ∈ (0, 1), then

|Ra,k(h)| ≤
M

(n + 1)!
|h|k+1
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Recognising A Local Minima

It seems the only way to conclude a point is a local minimum
is by comparing the functional values at every point.

However, if the function f is smooth, more efficient ways can
be thought of to identify local minima.

Theorem (First-Order Necessary Conditions):

If x∗ is a local minimizer and f is continuously differentiable in an
open neighbourhood of x∗, then

∇f (x∗) = 0.

Remark:

Therefore, for any point to be a minimiser of a function it has to
be a critical point.
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First-Order Necessary Conditions

Outline of Proof

By contradiction.
Let x∗ be a minimiser and ∇f (x∗) ̸= 0.
Since ∇f (x∗) ̸= 0, let p = −∇f (x∗), then

pT∇f (x∗) = −||∇f (x∗)||2 < 0

Now, consider

g(x) := pT∇f (x) = −(∇f (x∗))T∇f (x)
=⇒ g(x∗) = −||∇f (x∗)||2

∇f is continuous near x∗, therefore g(x) is also continuous
near x∗.
∃ a scalar T > 0 s.t.

g(x∗ + tp) < 0 for all t ∈ [0,T ]

=⇒ pT∇f (x∗ + tp) < 0.
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First-Order Necessary Conditions

Now for any t̄ ∈ (0,T ], we have from the Taylor’s theorem

f (x∗ + t̄p) = f (x∗) + t̄pT∇f (x∗ + tp), t ∈ (0, t̄)

but,

pT∇f (x∗ + tp) < 0 ∀ t ∈ (0, t̄) as t̄ ≤ T

=⇒ f (x∗ + t̄p) < f (x∗) ∀t̄ ∈ (0,T ]

In a neighbourhood of x∗ ∃ a direction along which a point
inside the neighbourhood has a value lesser than at x∗ which
contradicts the assumption that x∗ is a local minimiser.
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Stationary Point

Definition

A point x∗ is called a stationary point for f if

∇f (x∗) = 0.

Any local minimiser must be a stationary point for smooth
functions.

B a matrix is positive definite if pTBp > 0 for all vectors
p ̸= 0.

positive semi-definite if pTBp ≥ 0 for all p.
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Second Order Necessary Conditions

Theorem

If x∗ is a local minimiser of f and ∇2f exists and is continuous in
an open neighbourhood of x∗, then

∇f (x∗) = 0 and ∇2f (x∗) is positive semi-definite.

Sketch of the Proof

∇f (x∗) = 0 from the previous theorem.

Assume that ∇2f (x∗) is not positive semi-definite.

Therefore, ∃ a vector p s.t.

pT∇2f (x∗)p < 0
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Second Order Necessary Conditions

Now consider the function

g(x) = pT∇2f (x)p

g(x∗) < 0 and since ∇2f (x) is continuous around x∗, g(x) is
continuous around x∗

Therefore ∃ T s.t. ∀ t ∈ [0,T ]

g(x∗ + tp) < 0.

=⇒ pT∇2f (x∗ + tp)p < 0.

By doing a Taylor series expansion around x∗ we get

f (x∗ + t̄p) = f (x∗) + t̄pT∇f (x∗) + 1

2
t̄2pT∇2f (x∗ + tp)p

∀ t̄ ∈ (0,T ] and some t ∈ (0, t̄)
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Second Order Necessary Conditions

1 Therefore,

f (x∗ + t̄p) = f (x∗) +
1

2
t̄2pT∇2f (x∗ + tp)p

=⇒ f (x∗ + p̄) < f (x∗)

2 which is a contradiction as x∗ is a minimiser and in the
direction p, the function value is less than that at x∗ in any
neighbourhood.
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Second Order Sufficient Conditions

Theorem

Suppose that ∇2f is continuous in an open neighbourhood of x∗

and that ∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is
a strict local minimiser of f .

Sketch of Proof

Let x∗ is not a minimiser.
For every neighbourhood of x∗, ∃ ||∆x || > 0 s.t.

f (x∗ +∆x) < f (x∗)

or f (x∗ +∆x) = f (x∗) + ∆x∇f (x∗) + 1

2
∆xT∇2f (x∗)∆x + R2(∆x)

Consider the expression in the R.H.S

1

2
∆xT∇2f (x∗)∆x + R2(∆x)
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Second Order Sufficient Conditions

Define h(x) = xT∇2f (x∗)x

Since ∇2f (x∗) is P.D. h(x) > 0 for x ̸= 0.

Since h is continuous, on the compact set {x | ||x || = 1}, h
should attain its minimum value.

It has to be > 0. Say it be β > 0

Now look at the expression ∆xT∇2f (x∗)∆x , for ||∆x || > 0
we can multiply 1

||∆x ||2 to it and get

∆xT

||∆x ||
∇2f (x∗)

∆x

||∆x ||
and

∣∣∣∣∣∣∣∣ ∆x

||∆x ||

∣∣∣∣∣∣∣∣ = 1

=⇒ ∆xT

||∆x ||
∇2f (x∗)

∆x

||∆x ||
≥ β

=⇒ 1

2

∆xT

||∆x ||
∇2f (x∗)

∆x

||∆x ||
≥ 1

2
β
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Note that lim||∆x ||→0
R2(∆x)
||∆x ||2 = 0,

one can find a δ > 0 s.t.

0 < ||∆x || < δ =⇒
∣∣∣∣ 1

||∆x ||2
R2(∆x)

∣∣∣∣ < 1

2
β

As a result for all 0 < ∆x < δ the expression in the R.H.S.
≥ 0.

Therefore, f (x∗ +∆x) > f (x∗), which is a contradiction.

In conclusion x∗ is a unique local minimiser.

Remark

The Second order sufficient conditions are not necessary for a point
to be a strict local minimiser (without satisfying them as well)

f (x) = x4, x∗ = 0 is a local minimiser, but ∇2f (x∗) vanishes,
it is not P.D. .
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Global Minimiser for Convex Functions

Theorem

When f is convex, any local minimiser x∗ is a global minimiser of
f . If in addition f is differentiable, then any stationary point x∗ is
a global minimiser of f .

Sketch of the proof

First Part

Suppose x∗ is a local, but not a global minimiser

∃ a point z ∈ Rn s.t.

f (z) < f (x∗)

Consider the line segment that joins x∗ to z i.e.

x = λz + (1− λ)x∗, for some λ ∈ [0, 1]
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Global Minimiser for Convex Functions

by convexity of f

f (x) ≤ αf (z) + (1− α)f (x∗) < f (x∗) ∀ x ∈ L

where L is the line segment.

Any neighbourhood of x∗ contains a piece of the line segment
so there will always be a point x ∈ N at which the above
inequality is satisfied

=⇒ x∗ is not a local minimiser.
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Global Minimiser for Convex Functions

Second Part

Suppose x∗ is not a global minimiser and choose z as above.

∇f (x∗)T (z − x∗) =
d

dλ
f (x∗ + λ(z − x∗))|λ=0

= lim
λ→0

f (x∗ + λ(z − x∗))− f (x∗)

λ

≤ lim
λ→0

λf (z) + (1− λ)f (x∗)− f (x∗)

λ

= f (z)− f (x∗) < 0

=⇒ ∇f (x∗) ̸= 0, or x∗ is not a stationary point.
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