Algorithms For Unconstrained Minimisation An Overview

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

February 2, 2024

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 1/10

Overview

- All algorithms for unconstrained minimization require the user to supply a starting point(an <u>initial guess</u> denoted by x₀).
- x_0 is chosen using some insight about the problem at hand.
- Beginning at x₀, optimization algorithms generate a sequence of iterates {x_k}[∞]_{k=0} that terminate when either no more progress could be made or when the solution is approximated to some desired accuracy.

Stopping Criteria

can't we use $||x_{\mathcal{K}} - x^*||$ or $||f(x_k) - f(x^*)||$?? In practice given a small $\epsilon > 0$ (Tolerance) s.t.

•
$$||\nabla f(x_k)|| < \epsilon$$
.
• $||x_k - x_{k-1}|| < \epsilon$ or $||x_k - x_{k-1}|| < \epsilon ||x_{k-1}||$.
• $|f(x_k) - f(x_{k-1})| < \epsilon$ or $|f(x_k) - f(x_{k-1})| < \epsilon |f(x_{k-1})|$.

Algorithms For Unconstrained Minimisation An Overview

Lists in Beamer

Overview

- In order to move from one iterate x_k to the next i.e. x_{k+1} , the algorithms may use just the information about the function fat x_k or it may use some or all information at previous iterates $(x_0, x_1, \ldots, x_{k-1}).$
- At the new iterate x_{k+1} desirably the function value is lesser than that at x_k (monotone algorithms).
- There do exist non-monotone algorithms, but even for them at some m > 0, $f(x_{k+m}) < f(x_k)$.
- There are two fundamental strategies (families of procedures) to move from the point x_k to x_{k+1} :

1. Line Search Methods

2. Trust Region Methods < □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ク۹ ℃ 3/10

Line Search Strategy

- The algorithm chooses a direction p_k and searches along this direction from the current iterate x_k for a new iterate with a lower function value.
- The distance to move along *p_k* can be found by approximately solving the following one-dimensional minimization problem to find a step length *α*:

$$\min_{\alpha>0}f(x_k+\alpha p_k)$$

- Exact solution would give the maximum benefit of moving along *p_k*.
- But, an exact minimisation may be expensive and is usually unnecessary.
- Instead, a limited number of trial step lengths are generated by the algorithm until it finds an approximation of the minimum (loosely).
- At the new point a new step-direction and step length are calculated.

Algorithms For Unconstrained Minimisation An Overview Line Search Strategy

Line Search Strategy

Figure: Line Search Search Direction.

Trust Region Strategy

- The information gathered about *f* is used to construct a model function *m_k*.
- The behaviour near the current point x_k is similar to that of the actual objective function f near x_k .
- As the model m_k may not be a good approximation of f when x is far from x_k , the search for a minimizer of m_k is restricted to a small region (trust region) around x_k .
- The candidate step *p* is found by approximately solving the following sub-problem

$$\min_p m_k(x_k+p)$$

where $x_k + p$ lies inside the trust region.

 If the candidate step doesn't procedure sufficient reduction then the trust region radius is deemed to be too large. Algorithms For Unconstrained Minimisation An Overview Trust Region Strategy

Trust Region Str<u>ategy</u>

- The trust region is shrunk and the process is resumed.
- The region usually is a ball defined by

$$||p||_2 \leq \Delta,$$

where $\Delta > 0$ is called the trust-region radius.

• The model m_k is usually defined by a quadratic function of the form:

$$m_k(x_k+p)=f_k+p^T\nabla f_k+\frac{1}{2}p^TB_kp,$$

 f_k and ∇f_k are the functional values and gradient of f at x_k .

- m_k is in agreement with f at x_k upto first order.
- The matrix B_k is either the Hessian or some approximation of it. ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 7/10

Algorithms For Unconstrained Minimisation An Overview Trust Region Strategy

Trust Region Strategy

Example

Suppose that the objective is given by

$$f(x) = 10(x_2 - x_1^2)^2 + (1 - x_1)^2$$

At the point $x_k = (0, 1)$ its gradient and Hessian are:

$$abla f_k = \begin{bmatrix} -2\\ 20 \end{bmatrix}, \qquad
abla^2 f_k = \begin{bmatrix} -38 & 0\\ 0 & 20 \end{bmatrix}$$

<ロ > < 回 > < 臣 > < 臣 > 臣 の Q @ 8/10

Algorithms For Unconstrained Minimisation An Overview Trust Region Strategy

Trust Region Strategy

Figure: Two possible trust regions (circles) and their corresponding steps p_k . The solid lines are contours of the model function m_k .

Trust Region Strategy

- Each time the size of the trust region is decreased after failure of a candidate iterate, the step from x_k to the new candidate will be shorter, and it usually points in a different direction from the previous candidate.
- The trust-region strategy differs in this respect from line search, which stays with a single search direction.
- The line search and trust-region approaches differ in the order in which they choose the direction and distance of the move to the next iterate.
- Line search starts by fixing the direction p_k and then identifying an appropriate distance, namely the step length α_k .
- In trust region, a maximum distance the trust-region radius Δ_k is chosen and then a direction and step that attain the best improvement possible subject to this distance constraint is seeked.
- If this step proves to be unsatisfactory, we reduce the distance measure Δ_k and try again.