Line Search Methods

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

February 16, 2024

<ロ > < 母 > < 臣 > < 臣 > 臣 の Q で 1/20

Line Search Method

- In each iteration of a line search method a search direction <u>pk</u> is computed, and
- then its decided how far to move along that direction.

An iteration is given by

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k \tag{1}$$

where $\alpha_k > 0$ (scalar) called the step length

. The success of a line search method depends on effective choices of both:

- **1** the direction p_k
- **2** the step length α_k

The Steepest Descent Direction

- The steepest descent direction −∇*f_k* is the most obvious choice for search direction for a line search method.
- Among all Directions once could from x_k, along −∇f_k, f decreases most rapidly.

Justification

• Consider any search direction p and step-length α , we have

$$f(x_k+\alpha p) = f_k+\alpha p^T \nabla f_k + \frac{\alpha^2 p^T \nabla^2 f(x_k+tp)p}{2} \text{ for some } t \in (0,\alpha)$$

 Let α << 1 (small) and we consider the first-order approximation of f at x_k + αp around x_k as:

$$f(x_k + \alpha p) \approx f(x_k) + \alpha p^T \nabla f_k$$

• Change in f moving from x_k to $x_k + \alpha p$ is $f(x_k + \alpha p) - f(x_k)$

Line Search Methods The Steepest Descent Direction

The Steepest Descent Direction

 As the distance moved in the direction is α, therefore, the rate of change of f along the direction p at x_k is

$$\frac{f(x_k + \alpha p) - f(x_k)}{\alpha}$$

• which is coefficient of α , i.e.

$$p^T \nabla f_k$$

- This implies smaller the above value is, more descent can be achieved.
- Hence, the unit direction *p* of most rapid decrease is the solution to the problem

$$\min_{p} p^{T} \nabla f_{k}, \qquad \text{sub}$$

subject to ||p|| = 1.

Line Search Methods The Steepest Descent Direction

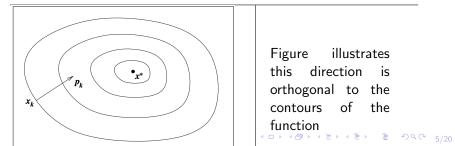
The Steepest Descent Direction

$$p^T \nabla f_k = ||p|| ||\nabla f_k|| \cos \theta = ||\nabla f_k|| \cos \theta$$

where θ is the angle between p and ∇f_k .

• The minimiser is attained when $\cos heta = -1$ and

$$p = -\frac{\nabla f_k}{||\nabla f_k||}$$



The Steepest Descent Direction

• At every step (iteration) in the steepest descent method the search direction is chosen along

$$p = -\nabla f_k$$

- α_k can be chosen in a variety of ways.
- One advantage of this method is it requires only the calculation of gradient (∇f_k), but not second derivatives.
- Line search methods may use search directions other than the steepest descent direction.

Descent Direction

Descent Direction

Any direction that makes an angle of strictly less than $\frac{\pi}{2}$ radians with $-\nabla f_k$ is guaranteed to produce a decrease in f, provided the step length is sufficiently small and is called a descent direction.

Now consider

$$f(x_k + \epsilon p_k) = f(x_k) + \epsilon p_k^T \nabla f_k + \mathscr{O}(\epsilon^2).$$

When p_k is a downhill (descent) direction, the angle θ_k between p_k and ∇f_k has cos θ_k < 0, so that

$$p_k^T \nabla f_k = ||p_k|| ||\nabla f_k|| \cos \theta_k < 0$$
$$\implies f(x_k + \epsilon p_k) < f(x_k)$$

 Most line search algorithms require pk to be descent direction, because this property guarantees that the function are 7/20

• This direction is derived from the second-order Taylor series approximation to $f(x_k + p)$, which is

$$f(x_{k+p}) \approx f_k + p^T \nabla f_k + \frac{1}{2} p^T \nabla^2 f_k p = {}^{def} m_k(p).$$
 (2)

- Assuming for the moment that $\nabla^2 f_k$ is positive definite, we obtain the Newton direction by finding the vector p that minimizes $m_k(p)$.
- By simply setting the derivative of m_k(p) to zero, we obtain the following explicit formula:

$$p_k^N = -(\nabla^2 f_k)^{-1} \nabla f_k.$$
(3)

 The Newton direction is reliable when the difference between the true function f(x_k + p) and its quadratic model m_k(p) is not too large.

- If ∇²f is sufficiently smooth, this difference introduces a perturbation of only O(||p||³).
- Therefore, when ||p|| is small

 $f(x_k + p) \approx m_k(p)$ quite accurately

• The Newton direction can be used in a line search method when $\nabla^2 f_k$ is positive definite, as in this case we have

$$abla f_k^T p_k^N = -p_k^{N^T}
abla^2 f_k p_k^N
onumber \\ < -\sigma_k ||p_k^N||^2$$

for some $\sigma_k > 0$ (+ve definiteness of $\nabla^2 f_k$)

Unless the gradient ∇f_k (and therefore the step p^N_k) is zero, we have

$$abla f^{T} p_{k}^{N} < 0$$
 , the set of th

- Unlike the steepest descent direction, there is a <u>"natural"</u> step length of 1 associated with the Newton direction.
- Adjust α only when it does not produce a satisfactory reduction in the value of f.
- Note that when $\nabla^2 f_k$ is not positive definite the Newton direction may not exist, since $(\nabla^2 f_k)^{-1}$ may not exist.
- Even when it is defined, it may not satisfy the descent property, and therefore is unsuitable.
- Methods that use Newton direction have fast rate of local convergence (more on this later).
- After a neighbourhood of the solution is reached, convergence to high accuracy often occurs in just a few iterations.

- The main drawback is the need to calculate the Hessian $\nabla^2 f(x)$.
- Explicit computation of this matrix of second derivatives can sometimes be a cumbersome, error-prone, and expensive process.
- Finite-difference and automatic differentiation techniques come useful in avoiding the need to calculate second derivatives by hand.

Quasi-Newton Search Direction

- <u>Quasi-Newton</u> search directions provide an attractive alternative to Newton's method.
- They do not require computation of the Hessian and yet still attain a superlinear rate of convergence.
- In place of the true Hessian ∇² f_k, they use an approximation B_k, which is updated after each step to take account of the additional knowledge gained during the step.
- The updates make use of the fact that changes in the gradient g provide information about the second derivative of f along the search direction.

Quasi-Newton Search Direction

• Using the Taylor's expansion we have

$$\nabla f(x+p) = \nabla f(x) + p^T \nabla^2 f(x) + \mathcal{O}(||p||^2)$$

• By setting $x = x_k$ and $p = x_{k+1} - x_k$, we obtain

$$\nabla f_{k+1} = \nabla f_k + \nabla^2 f_k (x_{k+1} - x_k) + \mathscr{O}(||x_{k+1} - x_k||^2).$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の へ · 13/20

Quasi-Newton Search Direction

• When x_k and x_{k+1} lie in a region near the solution x^* , within which $\nabla^2 f$ is positive definite, the final term in this expansion is eventually dominated by the $\nabla^2 f_k(x_{k+1} - x_k)$ term, and we an write.

$$\nabla^2 f_k(x_{k+1}-x_k) \approx \nabla f_{k+1} - \nabla f_k.$$
(4)

- We choose the new Hessian approximation B_{k+1} so that it mimics the property (4) of the true Hessian.
- That is we require it to satisfy the following condition, known as the secant equation:

$$B_{k+1}s_k = y_k, \tag{5}$$

where $s_k = x_{k+1} - x_k$, $y_k = \nabla f_{k+1} - \nabla f_k$.

Quasi-Newton Search Direction

Typically, additional conditions are imposed on B_{k+1} , such as

- Symmetry (Motivated by symmetry of the exact Hessian).
- a requirement that the difference between successive approximations B_k and B_{k+1} have low rank.

Two of the most popular formulae for updating the Hessian approximation B_k are:

Symmetric-rank-one (SR1) formula:

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}.$$
 (6)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで 15/20

Quasi-Newton Search Direction

BFGS Formula:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}.$$
 (7)

• The difference between the matrices B_k and B_{k+1} is

• rank-one for SR1.

- rank-two in case of BFGS.
- Both updates satisfy the secant equation and both maintain symmetry.

Quasi-Newton Search Direction

• It can be shown that the BFGS formula generates positive definite approximations whenever the initial approximation B_o is positive definite and

$$s_k^T y_k > 0$$

The quasi-Netwon search direction is obtained by using B_k instead of the exact Hessian ∇²f_k in the Newton direction

$$p_k = -B_k^{-1} \nabla f_k.$$

• Some practical implementations of quasi-Newton methods avoid the need to factorise B_k at each iteration by <u>updating</u> inverse of B_k , instead of B_k itself.

Quasi-Newton Search Direction

• The equivalent formula for (SR1), applied to the inverse approximation

$$H_k : {}^{defn} = B_k^{-1} \text{ is}$$
$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$

where $\rho_k = \frac{1}{y_k^T s_k}$

• Then *p_k* is given by

$$p_k = -H_k \nabla f_k$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ・ ● ● ○ ○ 18/20

• This matrix-vector multiplication is simpler than the factorisation / back-substitution produce.

Line Search Methods Non-linear Conjugate Gradient Methods

Non-linear Conjugate Gradient Methods

- The direction here are generated by non-linear conjugate gradient methods.
- They have the form

$$p_{K} = -\nabla f(x_{k}) + B_{k}p_{k-1}$$

where B_k is a scalar that ensures that p_k and p_{k-1} are conjugate (to be defined later).

• Conjugate gradient methods were originally designed to solve systems of linear equations:

$$Ax = b$$

 Line Search Methods Non-linear Conjugate Gradient Methods

Non-linear Conjugate Gradient Methods

• The problem of solving this linear system is equivalent to the problem of minimising the convex quadratic function defined by

$$\phi(x) = \frac{1}{2}x^T A x - b^T x.$$

- In general, non-linear conjugate gradient directions are much more effective than the steepest descent direction and are almost as simple to compute.
- These methods do not attain fast convergence rates of Newton or quasi-Newton methods.
- But, they have the advantage of not requiring storage of matrices.