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Step Length

In computing the step length we face a trade-off.

We want to choose αk to give a substantial reduction of f ,
but we don’t want to spend too much time making the choice.

Off-course the ideal choice would be the global minimiser of
the univariate function ϕ(.) defined by

ϕ(α) = f (xk + αpk), α > 0. (1)

But in general, it is too expensive to identify this value.

It requires too many evaluations of the objective function
and/or the gradient to even find a local minimiser to
moderate precision.
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Figure: The ideal step length is the global minimiser
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Practically, strategies perform an inexact line search to
identify a step length that achieves adequate reductions in f
at minimal cost.

We will discuss these search strategies a little later.

We will now discuss various termination conditions for line
search algorithms and show that effective step lengths need
not lie near minimisers of the univariate function ϕ(α).

Is f (xk + αkpk) < f (xk) good enough to get convergence??

for example consider the function

f (x) = x2 − 1

it has the global minima at x = 0, f = −1.
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Consider a sequence {xk} s.t.

f (xk) =
5

k
, k = 1, 2, 3, . . .

=⇒ f (xk) > f (xk+1)

The reduction in
f at each step is
not enough to
get it to
converge to the
minimiser.

Figure: Insufficient reduction
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Armijo Condition (Sufficient Decrease Condition):

αk should be chosen such that

f (xk + αpk) ≤ f (xk) + c1α∇f Tk pk (2)

for some constant c1 ∈ (0, 1).

Since pk is a descent direction and c1 > 0 and α > 0 the first
thing that the Armijo condition asserts that there is a
reduction in f from xk to xk+1 = xk + αpk .

The reduction in f is atleast

c1α∇f Tk pk

therefore it also says the reduction in f must be proportional
to both the step length αk and the directional derivative
∇f Tk pk
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The right hand side of (2) is a linear function in α (say) l(α).

l(α) = f (xα) + c1α∇f Tk pk

The function l(.) has a negative slope c1∇f Tk pk but
c1 ∈ (0, 1).

Therefore, it lies above the graph of ϕ for small positive
values of α.

The sufficient decrease condition states that α is acceptable
only if

ϕ(α) ≤ l(α).

In practice, c1 is chosen to be quite small, say

c1 = 10−4
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Figure: The intervals on which the Armijo condition is satisfied is shown
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The sufficient decrease condition is not enough by itself to
ensure that the algorithm makes reasonable progress.

As it is satisfied for all sufficiently small values of α
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To rule out unacceptable short steps we introduce a second
requirement.

Curvature Conditions

αk should satisfy

∇f (xk + αkpk)
Tpk ≥ c2∇f Tk pk (3)

for some constant c2 ∈ (c1, 1).

The left-hand side is simply the derivative ϕ′(αk).

So the curvature condition ensures that the slope of ϕ at αk

is greater than c2 times the initial slope ϕ′(0).

If the slope ϕ′(α) is strongly negative, we have an indication
that we can reduce f significantly by moving further along the
chosen direction.
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On, the other hand if ϕ′(α) is only slightly negative or even
positive, it is a sign that we cannot expect much more
decrease in f in this direction.

So it makes sense to terminate the line search. (See Figure 6)

Typical values of c2 are 0.9 when the search direction pk is
chosen by a Newton or quasi-Newton method, and 0.1 when
pk is obtained from a non-linear conjugate gradient method.

The sufficient decrease and curvature conditions are known
collectively as the Wolfe conditions.
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The Wolfe Condition

Figure: Insufficient Reduction
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f (xk + αkpk) ≤ f (xk) + c1αk∇f Tk pk

∇f (xk + αkpk)
Tpk ≥ c2∇f Tk pk .

(4)

with 0 < c1 < c2 < 1.

A step length may satisfy the Wolfe conditions without being
particularly close to a minimiser of ϕ. (See previous figure)

The curvature conditions can be modified to force αk to lie in
atleast a broad neighbourhood of a local minimiser or
stationary point of ϕ.
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The Strong Wolfe Conditions

αk is required to satisfy

f (xk + αkpk) ≤ f (xk) + c1αk∇f Tk pk

|∇f (xk + αkpk)
Tpk | ≤ c2|∇f Tk pk |.

(5)

with 0 < c1 < c2 < 1.

The only difference with the Wolfe conditions is that we no
longer allow the derivative ϕ′(α) to be too positive.

It excludes points that are far from stationary points of ϕ.

Is it always possible to find step lengths that satisfy Wolfe
conditions ?
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The Wolfe Condition

Figure: Step Lengths satisfying the Wolfe conditions.
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Existence of α satisfying Wolfe conditions

Lemma

Suppose that f : Rn → R is continuously differentiable. Let pk be
a descent direction at xk , and assume that f is bounded below
along the ray

{xk + αpk | α > 0}

Then if 0 < c1 < c2 < 1, there exist intervals of step lengths
satisfying Wolfe conditions and the strong Wolfe conditions.

Sketch of Proof

ϕ(α) = f (xk + αpk)

is bounded below for all α > 0

Let l(α) = f (xk) + αc1∇f Tk pk , the line is unbounded below
and must intersect the graph of ϕ atleast once.
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Note that for very small values if α (we can find such α)

l(α) = f (xk) + αc1∇f Tk pk

> f (xk) + α∇f Tk pk as ∇f Tk pk < 0 and c1 < 1

≈ f (xk + αpk) = ϕ(α).

Therefore, to start with, the graph of l(α) stays above ϕ(α).

Now since ϕ(α) is bounded below ∃ a minimum value and
since l(α) is unbounded below it will (for large values of α)
attain values lesser than the minimum value of ϕ(α).
Therefore, both the graphs will intersect atleast once.

Let α′ > 0 be the smallest intersecting value of α that is

f (xk + α′pk) = f (xk) + α′c1∇f Tk pk .
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α′ is the point where the line l(α) meets ϕ(α) for the first
time . Therefore for all α < α′ the sufficient decrease
condition holds good.

Now by applying the mean value theorem on ϕ(α) in the
interval [0, α′] we get

ϕ(α′)− ϕ(0)

α′ − 0
= ϕ′(α′′) α′′ ∈ (0, α′)

=⇒ f (xk + α′pk)− f (xk) = α′∇f (xk + α′′pk)
Tpk

=⇒ f (xk + α′pk) = f (xk) + α′∇f (xk + α′′pk)
Tpk

∇f (xk + α′′pk)
Tpk = c1∇f Tk pk > c2∇f Tk pk

since c2 > c1and ∇f Tk pk < 0.
(6)

α′′ satisfies the Wolfe conditions and the inequalities hold
strictly for both the condition.
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Hence, by our smoothness assumption on f , there is an
interval around α′′ for which the Wolfe conditions hold.

Moreover, since the left-hand side term in the curvature
condition is negative, the strong Wolfe condition also holds in
the same interval.
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The Goldstein Conditions

The Goldstein are stated as a pair of inequalities, in the following
way:

f (xk)+(1−c)αk∇f Tk pk ≤ f (xk+αkpk) ≤ f (xk)+cαk∇f Tk pk , (7)

with 0 < c < 1
2 .

The second inequality is the sufficient decrease condition.

Whereas the first inequality is introduced to control the step
length from below.

A disadvantage of the Goldstein conditions vis-a-vis the Wolfe
conditions is that the first inequality in (7) may exclude all
minimizers of ϕ.

However, the Goldstein and Wolfe conditions have much in
common, and their convergence theories are quite similar.
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The Goldstein Conditions

Figure: The Goldstein conditions.
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Sufficient Decrease and Backtracking

The sufficient decrease condition alone is not sufficient to
ensure that the algorithm makes reasonable progress along the
given search direction.

However, the extra curvature condition can be dispensed off
by using a so-called backtracking approach to choose
candidate step length.

Backtracking Line Search

1 Choose ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1);

2 Set α = ᾱ

3 While f (xk + αpk) > f (xk) + cα∇f TK pk
4 α = ρα;

5 end.

Terminate with αk = α.
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Sufficient Decrease and Backtracking

The initial step length ᾱ is chosen to be 1 in Newton and
quasi-Newton methods, but can have different values in other
algorithms, such as steepest descent or conjugate gradient.

An acceptable step length will be found in a finite number of
steps as αk will eventually become small enough to satisfy the
sufficient decrease condition.

In practice the contraction factor ”ρ” is allowed to vary at
each iteration of the line search.

One may need to ensure that ρ ∈ [ρlo , ρhi ] for some fixed
constants 0 < ρlo < ρhi < 1.
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Sufficient Decrease and Backtracking

The backtracking approach either choose αk = ᾱ the initial
choice or else αk is short enough to satisfy the sufficient
decrease condition.

Still αk is not very small as, αk
ρ doesn’t satisfy the sufficient

decrease condition.

It is only by a factor of 1
ρ that αk is shorter from the previous

choice of αk which doesn’t work.

It is a very simple and quite a popular strategy to terminate
line search algorithms.

Well suited for Newton methods but less appropriate for
quasi-Newton and conjugate gradient methods.



25/57

Line Search Methods Analysis

Convergence of Line Search Methods

Convergence of Line Search Methods

Global Convergence

||∇fk || → 0 as k → ∞

i.e. convergence to a stationary point for any starting point x0.

To obtain global convergence:
1 Need to choose step lengths well;
2 Choose search directions pk appropriately as well.

Let pk be a chosen direction at the kth iteration of the line
search method.

We define θk to be the angle between pk and the steepest
descent direction −∇fk given by

cos θ =
−∇f Tk pk

||∇fk || ||pk ||
(8)
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Global Convergence

Theorem (Zountendijk)

Consider any iteration of the form

xk+1 = xk + αkpk

where pk is a descent direction and αk satisfies the Wolfe conditions.
Suppose that f is bounded below in Rn and that f is continuously
differentiable in an open set N containing the level set

L =def {x : f (x) ≤ f (x0)}

where x0 is the starting point of the iteration. Assume also that the
gradient ”∇f ” is Lipschitz continuous on N , i.e. there exists a constant
L > 0 s.t.

||∇f (x)−∇f (x̃)|| ≤ L||x − x̃ ||, for all x , x̃ ∈ N

Then ∑
k≥0

cos2 θk ||∇fk ||2 < ∞

.
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Global Convergence

Proof:

Consider the second Wolfe condition,

∇f (xk + αkpk)
Tpk ≥ c2∇f Tk pk

or, ∇f (xk+1)
Tpk ≥ c2∇f Tk pk

or, ∇f (xk+1)
Tpk −∇f (xk)

Tpk ≥ (c2 − 1)∇f Tk pk

or, (∇f (xk+1)
T −∇f (xk))

Tpk ≥ (c2 − 1)∇f Tk pk

(9)

For every descent direction, iteration lives in the level set.

From the Lipschitz condition we have:

(∇f (xk+1)−∇f (xk))
Tpk ≤ αkL||pk ||2.
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Global Convergence

By combining the two relation i.e. the last equation in (9) and
the one above we obtain

αk ≥ (c2 − 1)

L

∇f Tk pk
||pk ||2

(10)

Now consider the first Wolfe condition

f (xk + αkpk) ≤ f (xk) + c1αk∇f Tk pk

or, fk+1 ≤ fk + c1αk∇f Tk pk ( as ∇f Tk pk < 0)

or, fk+1 ≤ fk + c1
(c2 − 1)

L

(∇f Tk pk)
2

||pk ||2
using (10)

(11)

Note that

cos θk =
−∇f Tk pk

||∇fk || ||pk ||
=⇒ cos2 θk ||∇fk ||2 =

(∇f Tk pk)
2

||pk ||2
(12)
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Global Convergence

Therefore, fk+1 ≤ fk − c1(1−c2)
L cos2 θk ||∇fk ||2

Let c = c1(1−c2)
L .

By summing this expression over all indices less than or equal
to k , we obtain:

fk+1 ≤ f0 − c
k∑

j=0

cos2 θj ||∇fj ||2

Since f is bounded below, we have f0 − fk+1 is less than some
positive constant, for all k .

Therefore, by taking limits in the above we obtain

∞∑
k=0

cos2 θk ||∇fk ||2 < ∞.

which concludes the proof.
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Global Convergence

Similar results also hold for the Goldstein conditions or the
strong Wolfe conditions.

For all these strategies, the step length selection implies the
inequality ∑

k≥0

cos2 θk ||∇fk ||2 < ∞

which is called the Zoutendijk condition.

The assumptions of the theorem are not too restrictive.

f needs to be bounded below for the optimisation problem to
be well defined.

The smoothness assumption - Lipschitz continuity of the
gradient - is implied by many of the smoothness conditions
that are used in local convergence theorems and are often
satisfied in practice.
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Global Convergence

The Zoutendijk’s condition implies that

cos2 θk ||∇fk ||2 → 0

If the choice of the search direction pk is made so that it
ensures that the angle θk is bounded away from 90

◦
, then

there is a positive constant δ s.t.

cos θk > δ > 0, for all k.

It now follows immediately that

lim
k→∞

||∇fk || = 0

.
In other words the gradient norm ||∇fk || → 0, provided that
the search directions are never too close to orthogonality with
the gradient.
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Global Convergence

Line Search + Steepest descent (for which the search direction
pk is parallel to the negative gradient) + Wolfe or Goldstein
conditions =⇒ Produces a gradient that converges to zero.
For line search methods the Zoutendijk condition is the
strongest global convergence result that can be obtained.
It cannot be guaranteed that the method converges to a
minimiser (let alone global minimiser).
Only insight we get is the algorithm, is attracted to stationary
points.

However, by making additional requirements on the search
direction pk
-> by introducing negative curvature information from the Hessian
∇2f (xk)
we can strengthen these results to include convergence to a local
minimiser.
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Condition Number

Consider any norm on Rn, and let A be a n × n matrix

Let M = ||A|| = max ||Ax ||||x || (maximum stretching)

Let m = ||A|| = min ||Ax ||
||x || (minimum stretching)

The reciprocal of m is the norm of the inverse of A

m = min
||Ax ||
||x ||

= min
||y ||

||A−1y ||
=

1

max ||A
−1y ||
||y ||

=
1

||A−1||

Condition number for inversion

The ratio of maximum to minimum stretching is the condition
number for inversion:

κ(A) =
M

m

An equivalent definition is κ(A) = ||A||||A−1||.
A finite large condition number means that the matrix is close
to being singular.
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Convergence for Newton-Like Methods

Consider a Newton-like method and assume that the matrices
Bk are positive definite with a uniformly bounded condition
number.

That is, there is a constant M such that

||Bk || ||B−1
k || ≤ M, for all k .

Since Bk is symmetric and positive definite matrix, we have

that the matrices B
1/2
k and B

−1/2
k exist and

||B1/2
k || = ||Bk ||1/2 and ||B−1/2

k || = ||B−1
k ||1/2
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cos θk = −
∇f Tk pk

||∇fk || · ||pk ||

=
pTk Bkpk

||Bk Pk || · ||pk ||
(pk = −B−1

k ∇fk)

≥ pTBkp

||Bk || ||pk ||2
||Bkpk || ≤ ||Bk || ||pK ||

=
pTk B

1/2
k B

1/2
k pk

||Bk || ||pk ||2
=

||B1/2
k pk ||2

||Bk || ||pk ||2

≥ ||pk ||2

||B−1/2
k ||2 ||Bk || ||pk ||2

=
1

||B−1
k || ||Bk ||

≥ 1

M

(13)

By combining this bound with Zountendijk condition we get

lim
k→∞

||∇fk || = 0
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Rate of Convergence

One of the key measures of performance of an algorithm is its
rate of convergence.

Q-linear Convergence

Let {xk} be a sequence in Rn that converges to x∗. We say that
the convergence is Q-linear if there is a constant r ∈ (0, 1) such
that

||xk+1 − x∗||
||xk − x∗||

≤ r , for all k sufficiently large.

That is the distance to the solution x∗ decreases at each iteration
by at least a constant factor bounded away from 1

Example

{xk} = 1 + (0.5)k converges Q-linearly to 1, with r = 0.5.
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Rate of Convergence
Q-superlinear

The convergence is said to be Q-superlinear if

lim
k→∞

||xk+1 − x∗||
||xk − x∗||

= 0.

Example

For example, the sequence 1 + k−k converges superlinearly to 1.

Q-quadratic

Q-quadratic convergence, an even more rapid convergence rate, is
obtained if

||xk+1 − x∗||
||xk − x∗||2

≤ M, for all k sufficiently large.

where M is a positive constant, not necessarily less than 1.

Example

An example is the sequence 1 + (0.5)2
k
.



38/57

Line Search Methods Analysis

Rate of Convergence

Rate of Convergence

The speed of convergence depends on r and (more weakly) on
M , whose values depend not only on the algorithm but also
on the properties of the particular problem.
Regardless of these values, however, a quadratically
convergent sequence will always eventually converge faster
than a linearly convergent sequence.
Obviously, any sequence that converges Q-quadratically also
converges Q-superlinearly, and any sequence that converges
Q-superlinearly also converges Q-linearly.
Higher rates of convergence (cubic, quartic, and so on) can
also be defined

Q-order of convergence is p

We say that the Q-order of convergence is p (with p > 1) if there
is a positive constant M such that

||xk+1 − x∗||
||xk − x∗||p

≤ M, for all k sufficiently large.
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Convergence of Line Search Methods

Designing optimization algorithms with good convergence
properties may seem to be very easy.

Since all we need to ensure is that the search direction pk
does not tend to become orthogonal to the gradient ∇fk , or
that steepest descent steps are taken regularly.

One could also simply compute cos θk at every iteration and
turn pk toward the steepest descent direction if cos θk is
smaller than some preselected constant δ > 0

Angle tests of this type ensure global convergence, but they
are undesirable for two reasons.

1 First, they may impede a fast rate of convergence

2 Second, angle tests destroy the invariance properties of
quasi-Newton methods.
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Because for problems with an ill-conditioned Hessian, it may
be necessary to produce search directions that are almost
orthogonal to the gradient, and an inappropriate choice of the
parameter δ may cause such steps to be rejected inturn
impeding the speed of convergence.

Algorithmic strategies that achieve rapid convergence can
sometimes conflict with the requirements of global
convergence, and vice versa.

The steepest descent method is the quintessential globally
convergent algorithm, but it is quite slow in practice.

Whereas, the pure Newton iteration converges rapidly when
started close enough to a solution,but its steps may not even
be descent directions away from the solution.

The challenge is to design algorithms that incorporate both
properties: good global convergence guarantees and a rapid
rate of convergence.
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CONVERGENCE RATE OF STEEPEST DESCENT

Consider the ideal case, in which the objective function is
quadratic and the line searches are exact.

Let us suppose

f (x) =
1

2
xTQx − bT x ,

where Q is symmetric and positive definite.

The gradient is given by

∇f (x) = Qx − b

The minimiser x∗ is the unique solution of the linear system

Qx = b.



42/57

Line Search Methods Analysis

Convergence of Line Search Methods

CONVERGENCE RATE OF STEEPEST DESCENT

To find the step length αk at each iteration xk one can
exactly minimise the univariate function

ϕ(α) = f (xk − α∇fk)

Denote ∇fk by gk (gradient at xk)
We have
f (xk − αgk) =

1

2
(xk − αgk)

TQ(xk − αgk)− bT (xk − αgk)

Differentiating the above w.r.t α we get

gT
k Qαgk −

1

2
gT
k Qxk −

1

2
xTk Qgk + bTgk

Equating the above to 0 we get

gT
k Qαgk − xTk Qgk + bTgk = 0

=⇒ gT
k Qαgk = xTk Qgk − bTgk = (xTk Q − bT )gk = ∇f Tk gk

=⇒ αk =
∇f Tk ∇fk

∇f Tk Q∇fk
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CONVERGENCE RATE OF STEEPEST DESCENT

By using this exact minimiser αk , we get the steepest descent
iteration for the quadratic function f as

xk+1 = xk −
(

∇f Tk ∇fk

∇f Tk Q∇fk

)
∇fk

The above expression yields a closed form expression for xk+1

in terms of xk .

To quantify the rate of convergence let us introduce the
weighted norm

||x ||2Q = xTQx

We know Qx∗ = b, x∗ being the unique minimiser we get

1

2
||x − x∗||2Q = f (x)− f (x∗)

So this norm measures the difference between the current
objective value and the optimal value.
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CONVERGENCE RATE OF STEEPEST DESCENT

By using the closed form expression for xk+1 and noting the
fact that ∇fk = Q(xk − x∗), we can derive the following
identity

||xk+1−x∗||2Q =

{
1−

(∇f Tk ∇fk)
2

(∇f Tk Q∇fk)(∇f Tk Q−1∇fk)

}
||xk−x∗||2Q

This expression describes the exact decrease in f at each
iteration.

But since the term inside the brackets is difficult to interpret.

It would be more useful to bound it (may be in terms of the
condition number of the problem).
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CONVERGENCE RATE OF STEEPEST DESCENT

Theorem

When the steepest descent method with exact line searches is
applied to the strongly convex quadratic function the error norm
satisfies

||xk+1 − x∗||2Q ≤
(
λn − λ1

λn + λ1

)2

||xk − x∗||2Q

where 0 < λ1 ≤ λ2 ≤ . . . ≤ λn are eigenvalues of Q.

The above inequality show that the function values fk
converge to the minimum f ∗ at a linear rate.
A special case is when all the eigenvalues are equal

λ1 = λ2 = . . . = λn

Then the convergence is achieved in just one step.
In general, as the condition number κ(Q) = λn

λ1
increases, the

convergence degrades.
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CONVERGENCE RATE OF STEEPEST DESCENT

The rate-of-convergence behaviour of the steepest descent method
is essentially the same on general nonlinear objective functions.
Theorem

Suppose that f : Rn → R is twice continuously differentiable, and
that the iterates generated by the steepest-descent method with
exact line searches converge to a point x∗ at which the Hessian
matrix ∇2f (x∗) is positive definite. Let r be any scalar satisfying

r ∈
(
λn − λ1

λn + λ1
, 1

)
,

where λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of ∇2f (x∗). Then
for all k sufficiently large, we have

f (xk+1)− f (x∗) ≤ r2[f (xk)− f (x∗)].

Therefore, the steepest descent method can have an unacceptably slow
rate of convergence, even when the Hessian is reasonably well
conditioned.
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CONVERGENCE RATE OF NEWTON’S METHOD

Consider the Newton iteration, for which the search is given by

pNk = −∇2f −1
k ∇fk (14)

Since the Hessian matrix ∇2fk may not always be P.D. pNk
may not always be a descent direction

xk+1 = xk + αkpk (15)

For all x in the vicinity of a solution point x∗ s.t. ∇2f (x∗) is
P.D. then the Hessian ∇2f (x) will also be P.D. .

Newton’s method will be well defined in this region.
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CONVERGENCE RATE OF NEWTON’S METHOD

Theorem

Suppose that f is twice differentiable and that the Hessian ∇2f is
Lipschitz continuous in a neighbourhood of a solution x∗ at which
the second order sufficient conditions are satisfied. Consider the
iteration (15) where pk is given by (14). Then

1 if the starting point x0 is sufficiently close to x∗ , the
sequence of iterates converges to x∗ ;

2 the rate of convergence of {xk} is quadratic; and

3 the sequence of gradient norms {||∇fk ||} converges
quadratically to zero.
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Sketch of proof:

From the definition of the Newton step and the optimality
condition ∇f (x∗) = 0 we have

xk + pNk − x∗ = xk − x∗ −∇2f −1
k ∇fk

= ∇2f −1
k

[
∇2fk(xk − x∗)− (∇fk −∇f∗)

]
.

From Taylor’s theorem we have

∇fk −∇f∗ =

∫ 1

0
∇2f (xk + t(x∗ − xk))(xk − x∗)dt,

Therefore, we have

||∇2f (xk)(xk − x∗)− (∇fk −∇f∗)||

=||
∫ 1

0

[
∇2f (xk)−∇2f (xk + t(x∗ − xk))

]
(xk − x∗) dt||
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≤
∫ 1

0
||
[
∇2f (xk)−∇2f (xk + t(x∗ − xk))

]
(xk − x∗)|| dt

≤
∫ 1

0
||∇2f (xk)−∇2f (xk + t(x∗ − xk))|| ||(xk − x∗)|| dt

Now ∇2f is Lipschitz around x∗ therefore we have:

||∇2f (xk)−∇2f (xk + t(x∗ − xk))||
≤L ||t(x∗ − xk)||

Therefore, integral is

≤ ||xk − x∗||2
∫ 1

0
Lt dt =

1

2
L||xk − x∗||2 (16)
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Now ∇2f (x∗) is nonsingular and continuous.

Therefore (∇2f (x∗))−1 is defined and is continuous in atleast
a small neighbourhood of x∗

Therefore, there exists a radius r > 0 s.t.

||∇2f −1
k || ≤ 2||∇2f (x∗)−1|| for all xk with ||xk − x∗|| ≤ r .

Substituting all the above in (16) we get

||xk + pNk − x∗|| ≤L||∇2f (x∗)−1|| ||xk − x∗||2

=L̃||xk − x∗||2
(17)

where L̃ = L||∇2f (x∗)−1||.
By choosing x0 such that ||x0 − x∗|| ≤ min

(
r , 1

2L̃

)
we can use

the above inequality to inductively deduce that the sequence
converges to x∗, and the rate of convergence is quadratic.



52/57

Line Search Methods Analysis

Convergence of Line Search Methods

CONVERGENCE RATE OF NEWTON’S METHOD
Now by using xk+1 − xk = pNk and ∇fk +∇2fkp

N
k = 0, we obtain:

||∇f (xk+1)|| = ||∇f (xk+1)−∇fk −∇2f (xk)p
N
k ||

= ||
∫ 1

0

∇2f (xk + tpNk )(xk+1 − xk) dt −∇2f (xk)p
N
k ||

= ||
∫ 1

0

∇2f (xk + tpNk )p
N
k dt −∇2f (xk)p

N
k ||

≤
∫ 1

0

||(∇2f (xk + tpNk )−∇2f (xk))p
N
k || dt

≤
∫ 1

0

||(∇2f (xk + tpNk )−∇2f (xk))|| ||pNk || dt

≤
∫ 1

0

L t ||pNk ||2 dt

=
L

2
||pNk ||2 =

L

2
||∇2f (xk)

−1∇fk ||2

≤ L

2
||∇2f −1

k ||2 ||∇fk ||2 ≤ 2L||∇2f (x∗)−1||2 ||∇fk ||2

Proving that the gradient norm converges quadratically.
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CONVERGENCE RATE OF QUASI-NEWTON’S
METHOD

Theorem

Suppose that f : Rn → R is twice continuously differentiable consider the
iteration

xk+1 = xk + αkpk (18)

where pk is a descent direction and αk satisfies the Wolfe conditions with
c1 <

1
2 . If the sequence {xk} converges to a point x∗such that

∇f (x∗) = 0 and ∇2f (x∗) is positive definite, and if the search direction
satisfies:

lim
k→∞

||∇fk +∇2fkpk ||
||pk ||

= 0 (19)

then

1 the step length αk = 1 is admissible for all k greater than a certain
index k0; and

2 if αk = 1 for all k > k0, {xk} converges to x∗ superlinearly.
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The search direction is given by

pk = −B−1
k ∇fk (20)

where Bk is some approximation to the Hessian ∇2fk and is
symmetric and positive definite.

If pk is the quasi-Newton search direction then (19) is
equivalent to

lim
k→∞

||(Bk −∇2f ∗)pk ||
||pk ||

= 0 (21)
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METHOD

Theorem

Suppose that f : Rn → R is twice continuously differentiable.
Consider the iteration

xk+1 = xk + pk

(that is, the step length αk is uniformly 1) and that pk is given by
(20). Let us assume also that {xk} converges to a point x∗ such
that ∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then {xk}
converges superlinearly if and only if (21) holds.
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Sketch of Proof

Consider

pk − pNk = ∇2f −1
k (∇2fkpk +∇fk) pNk = −∇2f −1

k ∇fk

= ∇2f −1
k (∇2fkpk − Bkpk)

= ∇2f −1
k (∇2fk − Bk)pk

We assume that ||∇2f −1
k || is bounded above for xk sufficiently

close to x∗.
As result we have

pk − pNk = O(||(∇2fk − Bk)pk ||)
Asserting (21) is same as saying

||(Bk −∇2f (xk))pk || = o(||pk ||)
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Therefore,
pk − pNk = o(||pk ||) (22)

Now if we multiply both sides of (22) by ∇2fk and use the
definition of the quasi-Newton direction we get (21).

Therefore, (21) and (22) are equivalent for the quasi-Newton
search direction.

Now combining (17) and (22) we get

||xk+pk−x∗|| ≤ ||xk+pNk −x∗||+||pk−pNk || = O(||xk−x∗||2)+o(||pk ||).
(23)

One can show that ||pk || = O(||xk − x∗||), so we obtain

||xk + pk − x∗|| ≤ o(||xk − x∗||) (24)

giving superlinear convergence.
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