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Conjugate Gradient Methods

They are among the most useful techniques for solving large
linear systems of equations.

They can be adapted to solve non-linear optimisation
problems.

The linear conjugate gradient method is an alternative to
Gaussian elimination that is well suited for solving large scale
problems.

Linear conjugate gradient method was proposed by Hestenes
and Stiefel in 1950.

A Key feature of these algorithms is, they require no matrix
storage and are faster than the steepest descent method.
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Linear Conjugate Gradient Method

The linear conjugate gradient method is an iterative method for
solving linear system of equations

Ax = b (1)

where A is an n × n symmetric positive definite matrix.

The above problem of solving a linear system of equations can
be equivalently stated as a minimisation problem:

min
x

ϕ(x) :=
1

2
xTAx − bT x (2)

Remark

Both (1) and (2) have the same unique solution.
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Linear Conjugate Gradient Method

The equivalence of both the problems allows us to view
conjugate gradient methods either as an algorithm for solving
linear systems or as a technique for minimising convex
quadratic functions.

The residual r of the linear system (1) is defined as:

r(x) := Ax − b (3)

Note that the gradient of ϕ is:

∇ϕ = r(x) (4)

In particular at x = xk

rk = r(xk) = Axk − b
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Conjugate Direction Methods

Generates a set of vectors with a property known as conjugacy.

The vectors are manufactured, in a very economical fashion.

Conjugacy

A set of non-zero vectors {p0, p1, · · · , pl} is said to be conjugate
with respect to the symmetric, positive definite matrix A if

pTi Apj = 0 for, i ̸= j (5)

Any set of vectors satisfying this property is also linearly
independent.
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Conjugate Direction Methods

The objective function ϕ(.) can be minimised in n steps by
successively minimising it along the individual directions in a
conjugate set.

Let x0 ∈ Rn and a set of conjugate directions
{p0, p1, · · · , pn−1}, the sequence of iterates is generated as:

xk+1 = xk + αkpk (6)

Where αk is the one-dimensional minimiser of the quadratic
function ϕ(.) along xk + αpk , and can be obtained explicitly
as:

αk = −
rTk pk

pTk Apk
(7)
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Convergence of Conjugate Direction Methods

Theorem

For any x0 ∈ Rn the sequence {xk} generated by the conjugate
direction algorithm converges to the solution x∗ of the linear
system (1) in at most n steps.

Sketch of the Proof:

Since the directions {pi} are linearly independent, they must
span the whole space Rn.

Therefore, the difference between x0 and the solution x∗ can
be written in the following way:

x∗ − x0 = σ0p0 + σ1p1 + . . .+ σn−1pn−1,

for some choice of scalars σk .
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Convergence of Conjugate Direction Methods

By premultiplying this expression by pTk A and using the
conjugacy property, we obtain:

σk =
pTk A(x

∗ − x0)

pTk Apk
(8)

We now establish the result by showing that these coefficients
σk coincide with the step lengths αk .

If xk is generated by the conjugate direction algorithm, we
have

xk = x0 + α0p0 + α1p1 + . . .+ αk−1pk−1.

By premultiplying this expression by pTk A and using the
conjugacy property, we have that

pTk A(xk − x0) = 0,
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Convergence of Conjugate Direction Methods

Therefore,

pTk A(x
∗ − x0) = pTk A(x

∗ − xk) = pTk (b − Axk) = −pTk rk

By comparing the above relation with (7) and (8), we find
that σk = αk , giving the result.

Remark

If the matrix A is diagonal, the contours of the function ϕ(.) are
ellipses whose axes are aligned with the co-ordinate directions
e1, e2, · · · , en.
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Convergence of Conjugate Direction Methods

Figure: Successive minimizations along the coordinate directions find the
minimizer of a quadratic with a diagonal Hessian in n iterations.
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Find the minimiser of this function by performing
one-dimensional minimisations along the coordinate directions
e1, e2, · · · , en in turn.

When A is not diagonal, its contours are still elliptical, but
they are usually no longer aligned with the coordinate
directions.

Successive minimization along these directions in turn no
longer leads to the solution in n iterations.
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Convergence of Conjugate Direction Methods
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Convergence of Conjugate Direction Methods

The nice behaviour of Figure 1 can be obtained if we
transform the problem to make A diagonal and then minimize
along the coordinate directions.

We transform the problem by defining new variables x̂ as:

x̂ = S−1x (9)

S is the n × n matrix defined by

S = [p0, p1, . . . , pn−1]

The quadratic ϕ defined by (2) now becomes:

ϕ̂(x̂) := ϕ(Sx̂) =
1

2
x̂T (STAS)x̂ − (STb)T x̂ . (10)
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Convergence of Conjugate Direction Methods

By conjugacy property (5), the matrix STAS is diagonal.

The minimising value of ϕ̂ can be found by performing n
one-dimensional minimisations along the coordinate directions
of x̂ .

The coordinate search strategy applied to ϕ̂ is equivalent to
the conjugate direction algorithm (6)-(7).

The conjugate direction algorithm terminates in at most n
steps.
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When the Hessian matrix is diagonal, each coordinate
minimisation correctly determines one of the components of
the solution x∗ .

After k one-dimensional minimisations, the quadratic has
been minimized on the subspace spanned by e1, e2, . . . , ek .

The following theorem proves this result for the general case in
which the Hessian of the quadratic is not necessarily diagonal.
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Expanding Subspace Minimization

rk+1 = rk + αkApk (11)

Theorem(Expanding Subspace Minimization)

Let x0 ∈ Rn be any starting point and suppose that the sequence {xk} is
generated by the conjugate direction algorithm (6)-(7). Then

rTk pi = 0, for i = 0, 1, . . . , k − 1, (12)

and xk is the minimiser of ϕ(x) = 1
2x

TAx − bT x over the set

{x |x = x0 + span{p0, p1, · · · , pk−1}} (13)

That is, the method minimizes ϕ piece-wise, one direction at a time.

The current residual rk is orthogonal to all previous search direction.
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How to obtain conjugate directions??

The discussion applies to a conjugate direction method
(6)-(7) based on any choice of the conjugate direction set
{p0, p1, . . . , pn−1}.
There are many ways to choose the set of conjugate
directions.

The eigenvectors {v1, v2, . . . , vn} of A are mutually orthogonal
as well as conjugate with respect to A.

For large-scale applications computation of the complete set
of eigenvectors requires an excessive amount of computation.

One could modify the Gram–Schmidt orthogonalisation
process to produce a set of conjugate directions rather than a
set of orthogonal directions.

The Gram–Schmidt approach is also expensive, since it
requires us to store the entire direction set.
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Conjugate Gradient Method

The conjugate gradient method is a conjugate direction
method with a very special property.

In generating its set of conjugate vectors, it can compute a
new vector pk by using only the previous vector pk−1.

Does not need to know all the previous elements
p0, p1, . . . , pk−2 of the conjugate set, pk is automatically
conjugate to these vectors.

Requires little storage and computation.
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Conjugate Gradient Method

The direction pk is chosen to be a linear combination of the
negative residual −rk and the previous direction pk−1:

pk = −rk + βkpk−1 (14)

The scalar βk is to be determined by the requirement that
pk−1 and pk must be conjugate with respect to A.

Note that we want to impose pTk−1ApK = 0 (the conjugacy
condition).

By pre-multiplying (14) by pTk−1A and using the above
imposition, we have:

βk =
rTk Apk−1

pTk−1Apk−1
(15)
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Conjugate Gradient Method

We choose the first search direction p0 to be the steepest descent
direction at the initial point x0.

We perform successive one-dimensional minimisations along each of
the search directions generated.

Algorithm (CG–Preliminary Version)

Given x0;
Set r0 ←− Ax0 − b(= ∇ϕ(x0)), p0 ←− −r0, k ←− 0;
while (rk ̸= 0):

αk ←− − rTk pk
pT
k ApK

;

xk+1 ←− xk + αkpk ;
rk+1 ←− Axk+1 − b;

βk+1 ←−
rTk+1Apk
pT
k Apk

;

pk+1 ←− −rk+1 + βk+1pk ;
k ←− k + 1

end(while)
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The algorithm Works

We present a more efficient version later.

Theorem

Suppose that the kth iterate generated by the conjugate gradient
method is not the solution point x∗. The following four properties
hold:

rTk ri = 0, , for i = 0, 1, . . . , k − 1, (16)

span{r0, r1, . . . , rk} = span{r0,Ar0, . . . ,Ak r0}, (17)

span{p0, p1, . . . , pk} = span{r0,Ar0, . . . ,Ak r0}, (18)

pTk Api = 0, for i = 0, 1, . . . , k − 1. (19)

Therefore the sequence {xk} converges to x∗ in at most n steps.
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A More Efficient Form of Conjugate Gradient Method

A slightly more economical version of the CG method can be
derived using the results of the previous theorems.
First we can use the definition of pk+1 i.e.

pk = −rk + βkpk−1

and the orthogonality of the residual with the (previous)
conjugate directions

rTk pi = 0, for i = 0, 1, . . . , k − 1
Now consider αk as

αk = −
rTk pk

pTk Apk

= −
rTk (−rk + βkpk−1)

pTk Apk

=⇒ αk =
rTk rk

pTk Apk
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A More Efficient Form of Conjugate Gradient Method

Second from rk+1 = rk + αkApk we get

Apk =
1

αk
(rk+1 − rk)

,Note that βk+1 is given by

βk+1 =
rTk+1Apk

pTk Apk

Concentrate on the denominator

pTk Apk =
pTk
αk

(rk+1 − rk)

= − 1

αk
pTk rk (pTk rk+1 = 0)

= − 1

αk
(−rTk + βkp

T
k−1)rk (pk = −rk + βkpk−1)

=
1

αk
rTk rk (pTk−1rk = 0)
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A More Efficient Form of Conjugate Gradient Method

Now the numerator of βk+1

rTk+1Apk = rTk+1(
1

αk
(rk+1 − rk))

=
rTk+1rk+1

αk
− 1

αk
rTk+1rk

=
rTk+1rk+1

αk
− 1

αk
rTk+1(−pk + βkpk−1)

=
rTk+1rk+1

αk
(rTk+1pk = 0), (rTk+1pk−1 = 0)

Therefore finally we have:

βk+1 =
rTk+1rk+1

rTk rk
(20)
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Updated CG algorithm

Algorithm (Refined Version)

Given x0;
Set r0 ←− Ax0 − b(= ∇ϕ(x0)), p0 ←− −r0, k ←− 0;
while (rk ̸= 0):

αk ←−
rTk rk

pTk ApK
;

xk+1 ←− xk + αkpk ;
rk+1 ←− rk + αkApk ;

βk+1 ←−
rTk+1rk+1

rTk rk
;

pk+1 ←− −rk+1 + βk+1pk ;
k ←− k + 1

end(while)
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Computation in CG Method

The major computational tasks to be performed at each step are:

computation of the matrix–vector product Apk ,

calculation of the inner products pTk (Apk) and,

rTk+1rk+1,

and calculation of three vector sums.

Remark

The CG method is recommended only for large problems;
otherwise, Gaussian elimination or other factorization algorithms
such as the singular value decomposition are to be preferred, since
they are less sensitive to rounding errors.
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Convergence of CG Method

In exact arithmetic sense the conjugate gradient method will
terminate at the solution in at most n iterations.

When the distribution of the eigenvalues of A has certain
favourable features, the algorithm will identify the solution in
many fewer than n iterations.

Theorem

If A has only r distinct eigenvalues, then the CG iteration will
terminate at the solution in at most r iterations.

Theorem

If A has eigenvalues λ1 ≤ λ2 ≤ . . . λn, we have:

||xk+1 − x∗||2A ≤
(
λn−k − λ1

λn−k + λ1

)
||x0 − x∗||2A. (21)
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Clustered Eigenvalues

The above theorem can be used to predict the behaviour of
the CG method on specific problems.

Suppose we have the situation plotted in the Figure where the
eigenvalues of A consist of m large values,

with the remaining n−m smaller eigenvalues clustered around
1.
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Clustered Eigenvalues

Define ε = λn−m − λ1 the above theorem tells us that after
m + 1 steps of the CG method

||xm+1 − x∗||A ≈ ε||x0 − x∗||A

For a small value of ε, we conclude that the CG iterates will
provide a good estimate of the solution after only m+1 steps.
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Clustered VS Uniform
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Clustered VS Uniform

The problem has has five large eigenvalues with all the smaller
eigenvalues clustered between 0.95 and 1.05.

The Figure compares this behaviour with that of CG on a
problem in which the eigenvalues satisfy some random
distribution.

For the problem with clustered eigenvalues the Theorem
predicts a sharp decrease in the error measure at iteration 6.

Note, however, that this decrease was achieved one iteration
earlier, illustrating the fact that Theorem gives only an upper
bound, and that the rate of convergence can be faster.

By contrast for the problem with randomly distributed
eigenvalues (dashed line), the convergence rate is slower and
more uniform.
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Preconditioning

We can aim to choose C such that the eigenvalues of
C−TAC−1, are more favorable for the convergence theory
discussed above.

We can try to choose C such that the condition number of
C−TAC−1 is much smaller than the original condition number
of A.

Besides being effective, a good pre-conditioner C should take
little storage and allow an inexpensive solution of Cx = x̂ .

Finding good pre-conditioners C depends on the problem (the
structure of A).
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Non-Linear Conjugate Gradient Methods

CG method can be viewed as a minimization algorithm for the
convex quadratic functions of a particular form.

Can we adapt the approach to minimize general convex
functions ??

or even general non-linear functions f .
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The Fletcher and Reeves Method

Fletcher and Reeves modified the conjugate gradient method for
non-linear functions by making two simple changes in the CG
algorithm.

To this end let us consider the updated CG algorithm.

Algorithm (Refined Version)

Given x0;
Set r0 ←− Ax0 − b(= ∇ϕ(x0)), p0 ←− −r0, k ←− 0;
while (rk ̸= 0):

αk ←− rTk rk
pT
k ApK

;

xk+1 ←− xk + αkpk ;
rk+1 ←− rk + αkApk ;

βk+1 ←−
rTk+1rk+1

rTk rk
;

pk+1 ←− −rk+1 + βk+1pk ;
k ←− k + 1

end(while)
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The Fletcher and Reeves Method

First, replace the formula for the step length αk (which
minimizes ϕ along the search direction pk).

We need to perform a line search that identifies an
approximate minimum of the non-linear function f along pk .

Second, the residual r , which is simply the gradient of ϕ
must be replaced by the gradient of the non-linear objective f .
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Algorithm (FR)

Fletcher and Reeves Method

Given x0;
Evaluate f0 = f (x0), ∇f0 = ∇f (x0);
Set p0 ←− −∇f0, k ←− 0;
while ∇fk ̸= 0:

Compute αk and set xk+1 = xk + αkpk ;
Evaluate ∇fk ;

βFR
k+1 ←−

∇f Tk+1∇fk+1

∇f Tk ∇fk
;

pk+1 ←− −∇fk+1 + βFR
k+1pk ;

k ←− k + 1
end(while)

Uses no matrix operations, requires only f and ∇f .
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Fletcher and Reeves Method

To make the specification of the algorithm complete, we need
to be more precise about the choice of line search parameter
αk .

Because of the second term in the expression for pk the search
direction pk may fail to be a descent direction unless αk

satisfies certain conditions.

By taking the inner-product of pk with the gradient vector
∇fk we obtain:

∇f Tk pk = −||∇fk ||2 + βFR
k ∇f Tk pk−1 (22)

If the line search is exact, so that αk−1 is a local minimiser of
f along the direction pk−1, we have

∇f Tk pk−1 = 0
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Fletcher and Reeves Method

If the line search is not exact, second term in (22) may
dominate the first term, and we may have ∇f Tk pk > 0,

implying that pk is actually a direction of ascent.

We can avoid this situation by requiring the step length αk to
satisfy the strong Wolfe conditions:

f (xk + αkpk) ≤ f (xk) + c1αk∇f Tk pk , (23)

|∇f (xk + αkpk)
Tpk | ≤ −c2∇f Tk pk , (24)

where 0 < c1 < c2 <
1
2 .

It can be shown that the second of the conditions is what
ensures that pk is indeed a descent direction.
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Other Variants of FR Method

Polak-Ribière

βPR
k+1 =

∇f Tk+1(∇fk+1 −∇fk)
||fk ||2

It is identical to the algorithm FR when f is strongly convex
quadratic function and the line search is exact;

as rTk ri = 0 for i = 0, 1, . . . , k − 1, the gradients are mutually
orthogonal, rendering

βFR
k+1 = βPR

k+1
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Other Variants of FR Method

PR is the variant of choice in practice.

For non-linear functions in general, with inexact l.s., PR is
empirically more robust and efficient than FR.

Yet, the strong Wolfe conditions don’t guarantee that pk is a
descent direction.

PR needs a good l.s. to do well.
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Other Variants of FR Method

Hestenes-Stiefel:

βHS
k+1 =

∇f Tk+1(∇fk+1 −∇fk)
(∇fk+1 −∇fk)Tpk

other variant :

βother
k+1 =

||∇fk+1||2

(∇fk+1 −∇fk)Tpk

βk+1 can be defined in other ways that also generalise the
quadratic case: for quadratic functions with a p.d. Hessian
and exact linear search we have:

βFR
k+1 = βPR

k+1 = βHS
k+1 = βother

k+1

for linear CG (since the successive gradients are mutually
perpendicular)
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Restarts

Restarting the iteration every n steps.

by setting βk = 0, i.e., taking a steepest descent step.

periodically refreshes the algorithm and works well in practice.

It leads to n-step quadratic convergence:

||xk+n − x∗||
||xk − x∗||2

≤ M

.

intuitively because near the minimum, f is approx. quadratic
and so after a restart we will have (approximately) the linear
CG method.

which requires p0 = steepest descent.
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For large n restarts may never occur, since an approximate
solution may be found in less than n steps.

nonlinear CG method are sometimes implemented without
restarts,

or else they include strategies for restarting that are based on
considerations other than iteration counts.

The most popular restart strategy makes use of the
observation rTk ri = 0, which is that the gradients are mutually
orthogonal when f is a quadratic function.

A restart is performed whenever two consecutive gradients are
far from orthogonal, as measured by the test

|∇f Tk ∇fk−1|
||∇fk ||2

≥ µ

where a typical value for the parameter µ is 0.1.
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Global convergence

With restarts and the strong Wolfe conditions, the algorithms
(FR, PR) have global convergence since they include as a
subsequence the steepest descent method (which is globally
convergent with the Wolfe conditions).

Without restarts:

FR has global convergence with the strong Wolfe conditions.
PR does not have global convergence, even though in practice
it is better.

In general, the theory on the rate of convergence of CG is
complex and assumes exact l.s.


	Lists in Beamer

