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Surfaces

Surfaces in Space

Explicit form: z = f(x, y)

Implicit form: F (x, y, z) = 0

− > There is also a parametric form for surfaces that gives the position of a point on the
surface as a vector function of two variables.

Parametric Form of Surfaces in Space
Suppose

r(u, v) = x(u, v) i+ y(u, v) j + z(u, v) k

is a continuous vector function that is defined on a region R in the uv-plane and
one-to-one on the interior of R
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Surface Area

The aim is to find a double integral for calculating the area of a curved surface S based on
the parametrization:

r(u, v) = x(u, v)i+ y(u, v)j + z(u, v)k, (u, v) ∈ D,

D := {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d}.
(1)

We need S to be smooth for the construction we are about to carry out.
Consider the following two partial derivatives:

ru =
∂r

∂u
=

∂x

∂u
i+

∂y

∂u
j +

∂z

∂u
k

rv =
∂r

∂v
=

∂x

∂v
i+

∂y

∂v
j +

∂z

∂v
k

(2)

Smooth Surface (Definition)

A parametrized surface r(u, v) (1) is smooth if ru and rv are continuous and ru × rv is
never zero on the interior of the parameter domain.
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Surface Area Derivation

Let S be a smooth surface given parametically by (1) over a rectangular region D.
(D is considered to be a rectangle for ease of derivation)
Suppose S is covered exactly once as (u, v) vary over D.
Divide D into small rectangle Rij with the lower left corner point as Qij = (ui, vj).
For simplicity, let the partition be uniform with u−lengths as ∆u and v−lengths as
∆v.
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Surface Area Derivation

The part Sij of S that corresponds to Rij has the corner Pij with position vector
r(ui, vj).

The tangent vectors to S at Pij = r(ui, vj) are given by:

r∗u = ru(ui, vj) =
∂x

∂u
(ui, vj) i+

∂y

∂u
(ui, vj) j +

∂z

∂u
(ui, vj) k

r∗v = rv(ui, vj) =
∂x

∂v
(ui, vj) i+

∂y

∂v
(ui, vj) j +

∂z

∂v
(ui, vj) k

(3)

The tangent plane to S is the plane that contains the two tangent vectors r∗u and r∗v .

The normal to S at Pij is the vector r∗u × r∗v

Notice that since S is assumed to be smooth, the normal vector is non-zero.
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Surface Area Derivation

The part Sij is a curved parallelogram on S whose sides can be approximated by the
vectors

r∗u∆u = Pi+1,j − Pi,j

r∗v∆u = Pi,j+1 − Pi,j

Therefore, the area of Sij can be approximated by:

Area of Sij ≈ |r∗u × r∗v |∆u∆v

Then an approximation to the area of S is obtained by summing over both indices i
and j:

Area of S ≈
∑
j

∑
i

|r∗u(ui, vj)× r∗v(ui, vj)|∆u∆v (4)
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Surface Area Definition

We thus define the surface area by taking the limit of the approximated quantity in (4).

Surface Area
Let S be a smooth surface given parametrically by

r = x(u, v) i+ y(u, v) j + z(u, v) k,

where (u, v) ∈ D, a region in the uv-plane. Suppose that S is covered exactly once as
(u, v) varies over D. Then the surface area of S is given by:

Area of S =

∫ ∫
D
|ru × rv|dA (5)

where ru = xui+ yuj + zuk and rv = xvi+ yvj + zvk.
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Surface Area of Graphs

Let the surface S is given by the graph of a function such as z = f(x, y), where
(x, y) ∈ D,

then we take the parameters as

u = x, v = y, z = z(u, v) = f(x, y)

.That is, S is given by:
r = ui+ vj + zk.

Now, we have

ru = i+ zuk = i+ fxk, rv = j + zvk = i+ fyk

we have

ru × rv =

∣∣∣∣∣∣
i j k
1 0 fx
0 1 fy

∣∣∣∣∣∣ = −fxi− fyj + k

Area of S =

∫ ∫
D
|ru × rv|dA =

∫ ∫
D
(
√
f2
x + f2

y + 1)dA
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Surface Area of Graphs

The surface area formula can also be derived from the
first principle as we had done for the parametric form.

For this, suppose that S is given by the equation

z = f(x, y) for (x, y) ∈ D

Divide D into smaller rectangles Rij with area:

∆Rij = ∆x∆y

.For the corner (xi, yj) in Rij , closest to the origin, let
Pij be the point (xi, yj , f(xi, yj)) on the surface.

The tangent plane to S at Pij is an approximation to S
near Pij .
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Surface Area of Graphs

The area Tij of the portion of the tangent plane that lies above Rij approximates the
area of Sij , the portion of S that is directly above Rij .

Therefore, we define an approximation to the area of the surface S as

∆(S) = lim
m→∞

lim
n→∞

m∑
i=1

n∑
j=1

Tij

Now to compute Tij , let’s consider a and b to be the vectors that start at Pij and lie
along the sides of the parallelogram.

Then Tij = |a× b|
a can be approximated by the vector Pi+1,j − Pi,j , giving us:

a = ∆xi+ fx(xi, yj)∆xk

Similarly, b is given by:
b = ∆yj + fy(xi, yj)∆yk

Saurav Samantaray Surface Area and Surface Integration 10 / 44



Surface Area of Graphs

Therefore Tij an be computed as:

Tij = |a× b| = | − fx(xi, yj)i− fy(xi, yj)j + k|∆(Rij)

=
√

f2
x + f2

y + 1∆(Rij)

Summing over these Tij and taking the limit, we obtain:

Area of S =

∫ ∫
D
(
√

f2
x + f2

y + 1)dA (6)
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Example

Find the surface area of the part of the surface z = x2 + 2y that lies above the triangular
region in the xy-plane with vertices (0, 0), (1, 0) and (1, 1).

T = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}, and f(x, y) = x2 + 2y.
The surface area is:∫ ∫

T

√
(2x)2 + 22 + 1dA =

∫ 1

0

∫ x

0

√
4x2 + 5 dy dx =

1

12
(27− 5

√
5).
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Surface Area of Implicit Surfaces

Surfaces are often presented as level sets of a function, described by an equation such
as:

F (x, y, z) = c, (7)

for some constant c.
Such a level surface does not come with an explicit parametrization, and is called an
implicitly defined surface.

Let S lies above a “shadow” region
R in the plane beneath it,

and p is a unit vector normal to the
plane region R

We assume that the surface is
smooth (F is dif- ferentiable and
∇F is nonzero and continuous on S)
and that ∇F · p ̸= 0.

so the surface never folds back over
itself.
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Surface Area of Implicit Surfaces

The Implicit Function Theorem implies that S is then the graph of a differentiable
function z = f(x, y),
although the function f(x, y) is not explicitly known.
Define the parameters u and v by u = x and v = y.
Then z = f(u, v)
As was done before

r(u, v) = ui+ vj + f(u, v)k

gives a parametrization of the surface S.
Then we have

ru = i+ fxk and rv = j + fyk

Now consider the partial derivatives of F (x, y, z) = c to get
∂F

∂x
+

∂F

∂z

∂z

∂x
= 0 and

∂F

∂y
+

∂F

∂z

∂z

∂y
= 0

We obtain the partial derivatives as
∂f

∂x
=

∂z

∂x
=

−Fx

Fz
and

∂f

∂y
=

∂z

∂y
=

−Fy

Fz
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Surface Area of Implicit Surfaces

Assume that the normal vector p is the unit vector k, so the region R lies in the
xy-plane.
By assumption, we then have ∇F · p = ∇F · k = Fz ̸= 0 on S.
Substitution of these derivatives into the derivatives of r gives

ru = i− Fx

Fz
k and rv = j − Fy

Fz
k

Therefore we have

ru × rv =
Fx

Fz
i+

Fy

Fz
j + k (Fz ̸= 0)

=
1

Fz
(Fxi+ Fyj + Fzk)

=
∇F

Fz
=

∇F

∇F · k

=
∇F

∇F · p
(p = k)
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Surface Area of Implicit Surfaces

Surface Area of F (x, y, z) = c

Let the surface S be given by F (x, y, z) = c. Let R be a closed bounded region which is
obtained by projecting the surface to a plane whose unit normal is p. Suppose that ∇F is
continuous on R and ∇F · p ̸= 0. Then

surface area of S =

∫ ∫
R

|∇F |
|∇F · p|

dA (8)

whenever possible, we project onto the coordinate planes.

if F (x, y, z) = c could be written as f(x, y) = z as a result of the implicit function
theorem we have

|∇F |
|∇F · p|

=

√
f2
x + f2

y + 1

12

which is the integrand in the surface area formula.
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Example
Find the area of the surface cut from the bottom of the paraboloid x2 + y2 = z by the
plane z = 4

Surface S is given by
f(x, y, z) = x2 + y2 − z = 0.

Projection to xy-plane to get the
region R as x2 + y2 ≤ 4.

∇f = 2xi+ 2yj − k

|∇f | =
√
1 + 4x2 + 4y2

Here p = k, =⇒ |∇f · p| = 1

R can be expressed in polar co-ordinate given by x = r cos θ, y = r sin θ, 0 ≤ θ ≤ 2π,
0 ≤ r ≤ 2.

So the surface area of S is∫ ∫
R

√
1 + 4x2 + 4y2dA =

∫ 2π

0

∫ 2

0

√
1 + 4r2 r dr dθ =

π

6
(17

√
17− 1).
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Example
Find the surface area of the cap cut by the cylinder x2 + y2 = 1 from the hemisphere

x2 + y2 + z2 = 2, z ≥ 0.

The surface projected on xy-plane
gives R as the disk x2 + y2 ≤ 1.

The surface is f(x, y, z) = 2, where
f(x, y, z) = x2 + y2 + z2.

∇f = 2xi+ 2yj + 2zk

|∇f | = 2
√

x2 + y2 + z2 = 2
√
2.

p = k =⇒ |∇f · p| = |2z| = 2z.
the surface area is

S =

∫ ∫
R

2
√
2

2z
dA =

√
2

∫ ∫
R

z−1dA = 2

∫ ∫
R

(2− x2 − y2)−1/2dA.

R is given by x = r cos θ, y = r sin θ, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and we have

S =
√
2

∫ 2π

0

∫ 1

0

r dr dθ√
2− r2

= 2π(2−
√
2).
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Surface integrals

To compute the flow of a liquid across a curved membrane, or the total electrical
charge on a surface, we need to integrate a function over a curved surface in space.

Such a surface integral is the two-dimensional extension of the line integral concept
used to integrate over a one-dimensional curve.
Like line integrals, surface integrals arise in two forms.

1 When we integrate a scalar function over a surface, such as integrating a mass density
function defined on a surface to find its total mass.

2 surface integrals of vector fields

The first form corresponds to line integrals of scalar functions.

The second form is analogous to the line integrals for vector fields.

An example of this form occurs when we want to measure the net flow of a fluid
across a surface submerged in the fluid.
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Surface integrals

let g(x, y, z) (g : D ⊂ R3 → R) is a function is defined over a surface S.

Let the surface S be given by f(x, y, z) = c.

To compute the integral of g, over S we need to look at area elements on S.

In turn we look at the region in
the plane over which the surface
S is considered.

Divide the region R into smaller
rectangles of area ∆Ak

Consider the area of the
corresponding portion of the
surface as ∆σk.
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Surface integrals

Then we have

∆σk =

(
|∇f |

|∇f · p|

)
k

∆Ak

Assuming that g is nearly constant on the smaller surface fragment σk, we form the
sum ∑

k

g(xk, yk, zk)∆σk ≈
∑
k

g(xk, yk, zk)

(
|∇f |

|∇f · p|

)
k

∆Ak

If the above sum converges, then we define that limit as the integral of g over the
surface S
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Surface integrals

Definition
Let Sbe a surface given by f(x, y, z) = c.

Let the projection of S onto a plane with unit normal p be the region R.

Let g(x, y, z) be a scalar valued function defined over S.

Then the surface integral of g over S is:∫ ∫
s
g dσ =

∫ ∫
R
g(x, y, z)

|∇f |
|∇f · p|

dA. (9)

We say dσ = |∇f |
|∇f ·p|dA
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Linearity

If the surface S can be represented as a union of non-overlapping smooth surfaces
S1, . . . , Sn, then ∫ ∫

s
g dσ =

∫ ∫
s1

g dσ + . . .+

∫ ∫
sn

g dσ.

If g(x, y, z) = g1(x, y, z) + . . .+ gm(x, y, z) over the surface S, then∫ ∫
s
g dσ =

∫ ∫
s
g1 dσ + . . .+

∫ ∫
s
gm dσ.

Similarly, if g(x, y, z) = kh(x, y, z) holds for a constant k, over S, then∫ ∫
s
g dσ = k

∫ ∫
s
h dσ
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Example
Integrate g(x, y, z) = xyz over the surface of the cube cut from the first octant by the planes x = 1,
y = 1,and z = 1.

We integrate g over the six surfaces and add
the results.

As g = xyz is zero on the co-ordinate
planes, we need integrals on sides A, B and
C.

Side A is the surface z = 1 defined on the
region RA : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 on the
xy-plane.

For this surface and the region,
p = k, ∇f = k, |∇f · p| = 1

Since z = 1 we have g(x, y, z)| = xyz|z=1 = xy.
the surface integral is given by∫ ∫

A

g(x, y, z) dσ =

∫ ∫
RA

xy
|∇f |

|∇f · p|dA =

∫ 1

0

∫ 1

0

xydxdy =

∫ 1

0

y

2
=

1

4

Similarly, compute
∫ ∫

B
g(x, y, z) dσ and

∫ ∫
C
g(x, y, z) dσ to finally write∫ ∫

S

g(x, y, z) dσ =

∫ ∫
A

g(x, y, z) dσ +

∫ ∫
B

g(x, y, z) dσ +

∫ ∫
C

g(x, y, z) dσ
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Example

Evaluate the surface integral of g(x, y, z) = x2 over the unit sphere.
The surface can be divided into the upper hemisphere and the lower hemisphere.

Let S be the upper hemisphere f(x, y, z) := x2 + y2 + z2 = 1, z ≥ 0.

Its projection on the xy-plane is the region

R : x = r cos θ, y = r sin θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

Here, p = k, ∇f = 2
√

x2 + y2 + z2 = 2.

|∇f · p| = 2|z| = 2
√

1− (x2 + y2) = 2
√
1− r2.

We, have ∫ ∫
S

x2 dσ =

∫ ∫
R

x2 |∇f |
|∇f · p|dA =

∫ ∫
R

x2

√
1− r2

dA

=

∫ 2π

0

∫ 1

0

r2 cos2 θ√
1− r2

r dr dθ =

∫ 2π

0

cos2 θ dθ

∫ 1

0

r3√
1− r2

dr =
2π

3
.

Since the integral of x2 on the upper hemisphere is equal to that on the lower hemisphere, the required integral
is 2× 2π

3
= 4π

3
.
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A simplification

When p = k, that is, when the region R is obtained by projecting the surface S onto the xy-plane, then
we have

|∇f |
|∇f · p| =

√
1 + z2x + z2y

Therefore, if the surface f(x, y, z) = c can be written explicitly by z = h(x, y), then the surface
integral takes the form∫ ∫

S

g(x, y, z) dσ =

∫ ∫
R

g(x, y, h(x, y))
√

1 + h2
x + h2

y dxdy,

where R is the region obtained by projecting S on to the xy-plane.

Similarly, if the surface can be written as y = h(x, z) and R is obtained by projecting S onto the
xz-plane, then ∫ ∫

S

g(x, y, z) dσ =

∫ ∫
R

g(x, h(x, z), z)
√

1 + h2
x + h2

z dxdz.

if the surface can be written as x = h(y, z) and R is obtained by projecting S onto the yz-plane, then∫ ∫
S

g(x, y, z) dσ =

∫ ∫
R

g(h(y, z, y, z)
√

1 + h2
y + h2

z dydz.

Saurav Samantaray Surface Area and Surface Integration 26 / 44



Example

Evaluate
∫ ∫

S y dσ, where S is the surface z = x+ y2, where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2.

Projecting the surface to xy-plane, we obtain the region R as the rectangle 0 ≤ x ≤ 1,
0 ≤ y ≤ 2.
The surface is given by z = h(x, y) = x+ y2.
So the surface integral is∫ ∫

S

y dσ =

∫ ∫
R

y
√

1 + 1 + (2y)2 dA =

∫ 1

0

∫ 2

0

√
2y

√
(1 + 2y2) dy dx

=
13

√
2

3
.
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Another Formulation

Suppose the surface S is given in a parameterized form:

r(u, v) = x(u, v)i+ y(u, v)j + z(u, v)k

where (u, v) ranges over the region Din the uv-plane.

Here, a change of variable happens. Then

dσ = |ru × rv|dudv

where ru = xui+ yuj + zuk and rv = xvi+ yvj + zvk

Therefore, we have∫ ∫
S
g(x, y, z) dσ =

∫ ∫
D
g(r(u, v))|ru × rv|dudv
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Example
Evaluate

∫ ∫
S
z dσ, where S is the surface whose sides S1, S2, S3 are:

S1 is given by the cylinder x2 + y2 = 1,

bottom S2 is the disk x2 + y2 ≤ 1, z = 0,
and,

whose top S3 is part of the plane
z = 1 + x that lies above S2.

S1 is given by
xi+ yj + zk, on the region D, given by

x = cos θ, y = sin θ, 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1 + x =⇒ 0 ≤ z ≤ 1 + cos θ

Then |rθ × rz| = | cos θi+ sin θj| = 1

We get,∫ ∫
S1

z dσ =

∫ ∫
D

z|rθ × rz |dA =

∫ 2π

0

∫ 1+cos θ

0
z dz dθ =

∫ 2π

0

(1 + cos θ)2

2
dθ =

3π

2
.
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Example

S2 lies in the plane z = 0. Hence, ∫ ∫
S2

z dσ

S3 lies above the unit disk and lies in the plane z = 1 + x. So,∫ ∫
S3

z dσ =

∫ ∫
D
(1 + x)

√
1 + z2x + z2ydA

=

∫ 2π

0

∫ 1

0
(1 + r cos θ)

√
1 + 1 + 0 r dr dθ =

√
2π.

Hence,∫ ∫
S
z dσ =

∫ ∫
S1

z dσ +

∫ ∫
S2

z dσ +

∫ ∫
S3

z dσ =
3π

2
+ 0 +

√
2π
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Orientation of a Surface

The curve C in a line integral inherits a natural orientation from its parametrization r(t)
because the parameter belongs to an interval a ≤ t ≤ b directed by the real line.

The unit tangent vector T along C points in this forward direction.

For a surface S, the parametrization r(u, v) gives a vector ru × rv that is normal to the
surface,

but if S has two “sides,” then at each point the negative −(ru × rv) is also normal to the
surface,

so we need to choose which direction to use.
If we look at the sphere, at any point on
the sphere there is a normal vector
pointing inward toward the center of the
sphere and another opposite normal
pointing outward.

When we specify which of these normals
we are going to use consistently across
the entire surface, the surface is given an
orientation.
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Orientable Surface

Definition
A smooth surface S is called orientable (or two-sided) if it is possible to define a field of unit
normal vectors n̂ on S which varies continuously with position. Once such normal vectors are
chosen, the surface is considered an oriented surface

The Möbius band is not orientable.

No matter where we start to construct a continuous unit normal field moving the vector
continuously around the surface in the manner shown will return it to the starting point with a
direction opposite to the one it had when it started out.

The vector at that point cannot point both ways and yet it must if the field is to be continuous.
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Orientation of Surface

If the surface S is given by z = f(x, y), then we take its orientation by considering
the unit normal vectors

n̂ =
−fxi− fyj + k√

1 + f2
x + f2

y

If S is a part of a level surface g(x, y, z) = c, then we may take

n̂ =
∇g

|∇g|

If S is given parametrically asr(u, v) = x(u, v)i+ y(u, v)j + z(u, v)k, then

n̂ =
ru × rv
|ru × rv|

Conventionally, the outward direction is taken as the positive direction.
But, sometimes we may take negative sign if it is preferred.
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Examples of Parametrization

1 The cone z =
√
x2 + y2, 0 ≤ z ≤ 1, can be parametrized by x = r cos θ, y = r sin θ

and z = r, 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Then its vector form is:

r(r, θ) = r cos θi+ r sin θj + rk.

2 The sphere x2 + y2 + z2 = a2 can be parametrized by x = a cos θ sinϕ,
y = a sin θ sinϕ and z = a cosϕ, 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π. In vector form the
parametrization is

r(θ, ϕ) = a cos θ sinϕi+ a sin θ sinϕj + a cosϕk.

3 The cylinder x2 + y2 = a2, 0 ≤ z ≤ 5 can be parametrized by

r(θ, z) = a cos θi+ a sin θj + zk.
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Surface integrals of vector Fields

Definition
Let F be a vector field in three-dimensional space with continuous components defined
over a smooth surface S having a chosen field of normal unit vectors n̂ orienting S. Then
the surface integral of F over S is ∫ ∫

S
F · n̂ dσ. (10)

It is also called the flux of F across S.

The flux is the integral of the scalar component of F along the unit normal to the
surface.

Thus in a flow, the flux is the net rate at which the fluid is crossing the surface S in the
chosen positive direction.
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Surface integrals of vector Fields

If S is part of a level surface g(x, y, z) = c, which is defined over the region D, then
dσ = ∇g

|∇g| then dσ = ∇g
|∇g·p| dA. So the flux across S is∫ ∫

S
F · n̂ dσ =

∫ ∫
S
F · ∇g

|∇g|
dσ =

∫ ∫
D
F · ∇g

|∇g · p|
dA

If S is parametrized by r(u, v), where D is the region in uv-plane, then
dσ = |ru × rv| dA. So the flux across S is∫ ∫

S
F · n̂ dσ =

∫ ∫
S
F · ru × rv

|ru × rv|
dσ =

∫ ∫
D
F (r(u, v))(rv × rv) dA.
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Example

Find the flux of F = yzj + z2k out-
ward through the surface S which is
cut from the cylinder y2 + z2 = 1,
z ≥ 0 by the planes x = 0 and
x = 1.

S is given by g(x, y, z) := y2 + z2 − 1 = 0, defined over the rectangle R = Rxy as in
the figure.
The outward unit normal is n̂ = + ∇g

|∇g| = yj + zk.

Here p = k. So, dσ = |∇g|
|∇g·k|dA = 1

2zdA.
Therefore, outward flux through S is∫ ∫

S
F · n̂ dσ =

∫ ∫
S
z dσ =

∫ ∫
R
z
1

2z
dA =

1

2
Area of R = 1
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Example
Find the flux of the vector field F = zi+ yj + xk across the unit sphere.

If no direction of the normal vector is given and the surface is a closed surface, we take n̂ in the positive
direction, which is directed outward.
Using the spherical co-ordinates, the unit sphere S is parametrized by

r(ϕ, θ) = sinϕ cos θi+ sinϕ sin θj + cosϕk,

where 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π gives the region D.

F (r(ϕ, θ)) = cosϕi+ sinϕ sin θj + sinϕ cos θk.

rϕ × rθ = sin2 ϕ cos θi+ sin2 ϕ sin θj + sinϕ cosϕk.∫ ∫
S

F · n̂ dσ =

∫ ∫
S

F (r(u, v)) · (rv × rv) dϕ dθ

=

∫ 2π

0

∫ π

0

(2 sin2 ϕ cosϕ cos θ + sin3 ϕ sin2 θ) dθ dϕ

= 2

∫ π

0

sin2 ϕ cosϕ dϕ

∫ 2π

0

cos θ dθ +

∫ π

0

sin3 π dϕ

∫ 2π

0

sin2 θ dθ

= 0 +

∫ π

0

sin3 π dϕ

∫ 2π

0

sin2 θ dθ =
4π
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Example

Find the surface integral of F = yzi+xj−z2k
over the portion of the parabolic cylinder y =
x2, 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.

We assume the positive direction of the normal n̂.
On the surface,we have x = x, y = x2, z = z giving the parametrization as r(x, z) = xi+ x2j + zk,
and D is given by 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.
On the surface S F is given as F = x2zi+ xj − zk.∫ ∫

S

F · n̂ dσ =

∫ ∫
D

F · (rx × rz) dx dz

=

∫ ∫
D

(x2zi+ xj − z2k) · (2xi− j) dx dz

=

∫ 4

0

∫ 1

0

(2x3 − x) dx dz =

∫ 4

0

(z − 1)/2 dz = 2.
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A Simplification

If S is given by z = f(x, y), then think of x, y as the parameters u and v. We have

F (x, y) = M(x, y)i+N(x, y)j + P (x, y)k and,

r = xi+ yj + f(x, y)k

Then, rx × ry = (i+ fxk)× (j + fyk) = −fxi− fyj + k.

Therefore, the flux is∫ ∫
S

F · n̂ dσ =

∫ ∫
D

F · (rx × ry) dx dy =

∫ ∫
D

(−Mfx −Nfy + P ) dx dy
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Example

Evaluate
∫ ∫

S
F · n̂ dσ where S F = yi+xj+

zk and S is the boundary of the solid enclosed
by the paraboloid z = 1−x2−y2 and the plane
z = 0.

The surface S has two parts: the top portion S1 and the base S2.
Since S is a closed surface, we consider its outward normal n̂. Projections of both S1 and S2 on
xy-plane are D, the unit disk.
By the simplified formula for the flux, we have∫ ∫

S1

F · n̂ dσ =

∫ ∫
D

(−Mfx −Nfy + P ) dx dy

=

∫ ∫
D

[−y(−2x)− x(−2y) + 1− x2 − y2] dx dy

=

∫ 2π

0

∫ 1

0

(1 + 4r2 cos θ sin θ − r2) r dr dθ =

∫ 2π

0

(
1

4
+ cos θ sin θ) dθ =

π

2
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Example continued

The disk S2 has positive direction, when n̂ = −k . Thus∫ ∫
s2

F · n̂ dσ =

∫ ∫
s2

(−F · k dσ =

∫ ∫
D
(−z) dx dy = 0

since on D for S2, z = 0.

Therefore, ∫ ∫
s
F · n̂ dσ =

∫ ∫
s1

F · n̂ dσ +

∫ ∫
s2

F · n̂ dσ =
π

2
.
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Boundary of an Oriented Surface

Consider an oriented surface with a
normal vector n̂.

Call the boundary curve of S as C.

The orientation of S induces a positive
orientation of the boundary of S.

If we walk in the positive direction of C
keeping our head pointing towards n̂,
then S will be to your left.

Recall that Green’s theorem relates a double integral in the plane to a line integral over its boundary.

We will have a generalization of this to 3 dimensions.

Write the boundary curve of a given smooth surface as ∂S.

The boundary is assumed to be a closed curve, positively oriented unless specified otherwise.
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Stokes’ Theorem

Theorem
Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed,
piecewise-smooth boundary curve ∂S with positive orientation. Let F = Mi+Nj + Pk
be a vector field with M , N , P having continuous partial derivatives on an open region in
space that contains S. Then ∮

∂S
F · dr⃗ =

∫ ∫
S
curl
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