
Inheritance

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

October 15, 2024

Saurav Samantaray Inheritance 1 / 35



UML Class Diagrams

“The Big Picture.”

let’s take a look at our first UML feature: the class diagram.

This diagram offers a new way of looking at object-oriented
programs, and may throw some additional light on the workings
of the TIMES1 and TIMES2 programs.

Looking at the listing for TIMES1 we can see that there are two
classes: time12 and time24.

In a UML class diagram, classes are represented by rectangles,
as shown

Figure 1: UML class diagram of the TIMES1 program.

Saurav Samantaray Inheritance 2 / 35



UML Class Diagrams

Figure 2: UML class diagram of the TIMES1 program.

Each class rectangle is divided into sections by horizontal lines.

The class name goes in the top section.

We can include sections for member data (called attributes in the
UML) and member functions (called operations).

Saurav Samantaray Inheritance 3 / 35



Associations

Classes may have various kinds of relationships with each other.

The classes in TIMES1 are related by association.

We indicate this with a line connecting their rectangles.

What constitutes an association?

Conceptually, the real-world entities that are represented by
classes in the program have some kind of obvious relationship.

Drivers are related to cars, books are related to libraries, race
horses are related to race tracks.

If such entities were classes in a program, they would be related
by association.

Saurav Samantaray Inheritance 4 / 35



Associations

In the TIMES2.CPP program, we can see that class time12 is
associated with class time24 because we are converting objects
of one class into objects of the other.

A class association actually implies that objects of the classes,
rather than the classes themselves, have some kind of
relationship.

Typically, two classes are associated if an object of one class
calls a member function (an operation) of an object of the other
class.

An association might also exist if an attribute of one class is an
object of the other class.

Saurav Samantaray Inheritance 5 / 35



Navigability

We can add an open arrowhead to indicate the direction or
navigability of the association.

Because time12 calls time24, the arrow points from time12 to
time24.

It’s called a unidirectional association because it only goes one
way.

If each of two classes called an operation in the other, there
would be arrowheads on both ends of the line and it would be
called a bidirectional association.

Saurav Samantaray Inheritance 6 / 35



Inheritance

Inheritance is probably the most powerful feature of
object-oriented programming, after classes themselves.

Inheritance is the process of creating new classes, called derived
classes, from existing or base classes.

The derived class inherits all the capabilities of the base class but
can add embellishments and refinements of its own.

The base class is unchanged by this process.

An important result of re-usability is the ease of distributing
class libraries.

A programmer can use a class created by another person or
company, and, without modifying it, derive other classes from it
that are suited to particular situations.

Saurav Samantaray Inheritance 7 / 35



The inheritance relationship

The arrow in the
figure goes in the
opposite direction
of what one might
expect.

If it pointed down
we would label it
inheritance.

However, the
more common
approach is to
point the arrow up,
from the derived
class to the base
class, and to think
of it as a “derived
from” arrow.

Saurav Samantaray Inheritance 8 / 35



The inheritance relationship

Inheritance is an essential part of OOP.

Once a base class is written and debugged, it need not be touched
again,

but, using inheritance, can nevertheless be adapted to work in
different situations.

Reusing existing code saves time and money and increases a
program’s reliability.

Inheritance can also help in the original conceptualisation of a
programming problem, and in the overall design of the program.

Saurav Samantaray Inheritance 9 / 35



Derived Class and Base Class

In ”COUNTPP3” the program used a class Counter as a
general-purpose counter variable.

A count could be initialised to 0 or to a specified number with
constructors, incremented with the ++ operator, and read with
the get count() operator.

Let’s suppose that we have worked long and hard to make the
Counter class operate just the way we want.

we’re counting people entering a bank, and we want to increment
the count when they come in

and now lets say we want to decrement it when they go out, so
that the count represents the number of people in the bank at any
moment.

Saurav Samantaray Inheritance 10 / 35



Derived Class and Base Class

Now we really need a way to decrement the count.

Easiest way is to insert a decrement routine directly into the
source code of the Counter class.

There are several reasons that we might not want to do this.

First, the class works very well and may have undergone many
hours of testing and debugging.

Of course that’s an exaggeration in this case,

but it would be true in a larger and more complex class.
If we start fooling around with the source code

the testing process will need to be carried out again,
off course we may foul something up and,
spend hours debugging code that worked fine before we modified
it

Saurav Samantaray Inheritance 11 / 35



Derived Class and Base Class

In some situations there might be another reason for not
modifying the Counter class:

We might not have access to its source code, especially if it was
distributed as part of a class library. (to be discussed later)

To avoid these problems we can use inheritance to create a new
class based on Counter, without modifying Counter itself.

Saurav Samantaray Inheritance 12 / 35



Specifying the Derived Class

see ”counten.cpp”
The listing starts off with the Counter class, which has not
changed !!
with one small exception, which we’ll look at later
we haven’t modeled this program on the POSTFIX program
Following the Counter class in the listing is the specification
for a new class, CountDn.
This class incorporates a new function, operator--(), which
decrements the count.
the key point—the new CountDn class inherits all the features
of the Counter class.
The first line of CountDn specifies that it is derived from
Counter:
class CountDn : public Counter

only a single colon (not the double colon used for the scope
resolution operator) is used, followed by the keyword public
and the name of the base class Counter.

Saurav Samantaray Inheritance 13 / 35



Specifying the Derived Class

This sets up the relationship between the classes.

it says that CountDn is derived from the base class Counter.

CountDn doesn’t need a constructor or the get count() or
operator++() functions, because these already exist in
Counter.

Saurav Samantaray Inheritance 14 / 35



UML Class Diagrams

Figure 3: UML class diagram for
COUNTEN

In the UML, inheritance is
called generalization,
because the parent class is
a more general form of the
child class.

Or to put it another way,
the child is more specific
version of the parent.

In UML class diagrams,
generalization is indicated
by a triangular arrowhead
on the line connecting the
parent and child classes.

the arrow means inherited
from or derived from or is
a more specific version of.

Saurav Samantaray Inheritance 15 / 35



UML Class Diagrams
The direction of the arrow
emphasises that the
derived class refers to
functions and data in the
base class, while the base
class has no access to the
derived class.

Notice that we’ve added
attributes (member data)
and operations (member
functions) to the classes in
the diagram.

The top area holds the
class title, the middle area
holds attributes, and the
bottom area is for
operations.

Saurav Samantaray Inheritance 16 / 35



Accessing Base Class Members

An important topic in inheritance is accessibility,
i.e. knowing when a member function in the base class can be
used by objects of the derived class
Let’s see how the compiler handles the accessibility:

Substituting Base Class Constructors
In the main() part of COUNTEN we create an object of class
CountDn:
CountDn c1;
This causes c1 to be created as an object of class CountDn and
initialised to 0.
There is no constructor in the CountDn class specifier, so what
entity carries out the initialisation?
It turns out that—at least under certain circumstances—if we
don’t specify a constructor, the derived class will use an
appropriate constructor from the base class.
This flexibility on the part of the compiler—using one function
because another isn’t available— appears regularly in inheritance
situations.

Saurav Samantaray Inheritance 17 / 35



Accessing Base Class Members

Substituting Base Class Member Functions
The object c1 of the CountDn class also uses the
operator++() to increment c1:
++c1;

and get count() functions to display the count in c1:
cout << "\nc1=" << c1.get count();

These two functions are from the Counter class.

Again the compiler, not finding these functions in the class of
which c1 is a member, uses member functions from the base
class.

Saurav Samantaray Inheritance 18 / 35



The protected Access Specifier

It may appear we have increased the functionality of a class
without modifying it.

In reality, its almost without modifying it.

There is just the single change that we made to the Counter
class.

The data in the previous classes we’ve looked at so far, including
count in the Counter class, have used the private access specifier.

In the Counter class in ”COUNTEN”, count is given a new
specifier: protected.

What does this do?

We know a member function of a class can always access class
members, whether they are public or private.

But an object declared externally can only invoke (using the dot
operator, for example) public members of the class.

It’s not allowed to use private members.

Saurav Samantaray Inheritance 19 / 35



The protected Access Specifier

suppose an object objA is an instance of class A, and function
funcA() is a member function of A.
Then in main() or any other function that is not a member of A,
for the statement
objA.funcA(); will not be legal unless funcA() is
public.
The object objA cannot invoke private members of class A.
Private members are, well, private.
With inheritance, however, there is a whole raft of additional
possibilities.
The question that concerns us at the moment is, can member
functions of the derived class access members of the base class?
The answer is that member functions can access members of the
base class if the members are public, or if they are
protected.
They can’t access private members.

Saurav Samantaray Inheritance 20 / 35



The protected Access Specifier

We don’t want to make count public, since that would allow it to
be accessed by any function anywhere in the program

and eliminate the advantages of data hiding.
A protected member, on the other hand, can be accessed by

member functions in its own class or—and
any class derived from its own class.

It can’t be accessed from functions outside these classes, such as
main().

This is just what we want.

Saurav Samantaray Inheritance 21 / 35



Access specifiers with inheritance.

Saurav Samantaray Inheritance 22 / 35



The protected Access Specifier

The moral is that if we are writing a class that we suspect might
be used, at any point in the future, as a base class for other
classes,

then any member data that the derived classes might need to
access should be made protected rather than private.

This ensures that the class is “inheritance ready.”

Saurav Samantaray Inheritance 23 / 35



Dangers of protected

there’s a disadvantage to making class members protected.

Say we’ve written a class library, which we’re distributing to the
public.

Any programmer who buys this library can access protected
members of your classes simply by deriving other classes from
them.

This makes protected members considerably less secure than
private members.

To avoid corrupted data, it’s often safer to force derived classes
to access data in the base class using only public functions in the
base class,

just as ordinary main() programs must do.

Using the protected specifier leads to simpler programming,

We need to weigh the advantages of protected against its
disadvantages in our own programs.

Saurav Samantaray Inheritance 24 / 35



Base Class Unchanged

even if other classes have been derived from it, the base class
remains unchanged.

In the main() part of ”COUNTEN”, we could define objects of
type Counter:
Counter c2; ←− object of base class

Such objects would behave just as they would if CountDn
didn’t exist.

The base class and its objects don’t know anything about any
classes derived from the base class.

inheritance doesn’t work in reverse.

In this example that means that objects of class Counter, such
as c2, can’t use the operator--() function in CountDn.

If we want a counter that you can decrement, it must be of class
CountDn, not Counter.

Saurav Samantaray Inheritance 25 / 35



Derived Class Constructors

There’s a potential glitch in the ”COUNTEN” program.

What happens if we want to initialise a CountDn object to a
value?

Can the one-argument constructor in Counter be used?

The answer is no.

the compiler will substitute a no-argument constructor from the
base class,

but it draws the line at more complex constructors

To make such a definition work we must write a new set of
constructors for the derived class.

Saurav Samantaray Inheritance 26 / 35



Derived Class Constructors

See ”counten2.cpp”
This program uses two new constructors in the CountDn class.
Here is the no-argument constructor:
CountDn() : Counter()

This constructor has an unfamiliar feature: the function name
following the colon.
This construction causes the CountDn() constructor to call the
Counter() constructor in the base class.
In main(), when we say
CountDn c1;
the compiler will create an object of type CountDn and then
call the CountDn constructor to initialize it.
This constructor will in turn call the Counter constructor,
which carries out the work.
The CountDn() constructor could add additional statements of
its own, but in this case it doesn’t need to, so the function body
between the braces is empty.

Saurav Samantaray Inheritance 27 / 35



Derived Class Constructors

The statement
CountDn c2(100);
in main() uses the one-argument constructor in CountDn.

This constructor also calls the corresponding one-argument
constructor in the base class:
CountDn(int c) : Counter(c) ←− argument
c is passed to Counter
{ }

This construction causes the argument c to be passed from
CountDn() to Counter(), where it is used to initialize the
object.

In main(), after initializing the c1 and c2 objects, we
increment one and decrement the other and then print the results.

Saurav Samantaray Inheritance 28 / 35



Overriding Member Functions

We can use member functions in a derived class that
override—that is, have the same name as—those in the base
class.
We might want to do this so that calls in our program work the
same way for objects of both base and derived classes.
See ”STAKARAY”
Earlier the program modeled a stack, a simple data storage
device.
It allowed to push integers onto the stack and pop them off.
However, STAKARAY had a potential flaw.
If we tried to push too many items onto the stack, the program
might bomb, since data would be placed in memory beyond the
end of the st[] array.
Or if we tried to pop too many items, the results would be
meaningless,
since we would be reading data from memory locations outside
the array.

Saurav Samantaray Inheritance 29 / 35



Overriding Member Functions

To cure these defects we’ve created a new class, Stack2, derived
from Stack.

Objects of Stack2 behave in exactly the same way as those of
Stack, except that

we will be warned if you attempt to push too many items on the
stack or,

if we try to pop an item from an empty stack

see ”staken.cpp”

Which Function Is Used?
The Stack2 class contains two functions, push() and pop().

These functions have the same names, and the same argument
and return types, as the functions in Stack.

Saurav Samantaray Inheritance 30 / 35



Overriding Member Functions

Which Function Is Used?
When we call these functions from main(), in statements like
s1.push(11);
how does the compiler know which of the two push()
functions to use?

The rule: When the same function exists in both the base class
and the derived class, the function in the derived class will be
executed.

Off course this is just true for objects of the derived class.

Objects of the base class don’t know anything about the derived
class and will always use the base class functions.

We say that the derived class function overrides the base class
function.

Saurav Samantaray Inheritance 31 / 35



Overriding Member Functions

Scope Resolution with Overridden Functions
How do push() and pop() in Stack2 access push() and
pop() in Stack?

They use the scope resolution operator, ::, in the statements
Stack::push(var); and return Stack::pop();

These statements specify that the push() and pop() functions
in Stack are to be called.

Without the scope resolution operator, the compiler would think
the push() and pop() functions in Stack2 were calling
themselves,

which—in this case—would lead to program failure

Saurav Samantaray Inheritance 32 / 35



Inheritance in the English Distance Class

English Distance class it was assumed that the distances to be
represented would always be positive.

This is usually the case.

However, if we were measuring, say, the water level of the
Pacific Ocean as the tides varied, we might want to be able to
represent negative feet-and-inches quantities.

Tide levels below mean-lower-low-water are called minus tides;
they prompt clam diggers to take advantage of the larger area of
exposed beach.

Let’s derive a new class from Distance.

This class will add a single data item to our feet-and- inches
measurements: a sign, which can be positive or negative.

When we add the sign, we’ll also need to modify the member
functions so they can work with signed distances.

Saurav Samantaray Inheritance 33 / 35



Inheritance in the English Distance Class

The DistSign class is derived from Distance.

The Distance class in this program is just the same as in
previous programs, except that the data is protected.

Actually in this case it could be private, because none of the
derived-class functions accesses it.

it’s safer to make it protected so that a derived-class function
could access it if necessary.

It adds a single variable, sign, which is of type posneg.

The sign variable will hold the sign of the distance.

The posneg type is defined in an enum statement to have two
possible values: pos and neg.

See ”englen.cpp”

Saurav Samantaray Inheritance 34 / 35



Constructors in DistSign

DistSign has two constructors, mirroring those in
Distance.
The first takes no arguments, the second takes either two or three
arguments.
The third, optional, argument in the second constructor is a sign,
either pos or neg.
Both constructors in DistSign call the corresponding
constructors in Distance to set the feet- and-inches values.
They then set the sign variable.
The no-argument constructor always sets it to pos.
The second constructor sets it to pos if no third-argument value
has been provided, or to a value (pos or neg) if the argument is
specified.
The arguments ft and in, passed from main() to the second
constructor in DistSign, are simply forwarded to the
constructor in Distance.

Saurav Samantaray Inheritance 35 / 35


