
Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Class Hierarchies

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

October 15, 2024

Saurav Samantaray Class Hierarchies 1 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Class Hierarchies

Until now inheritance has been used to add functionality to an
existing class.

let’s look at an example where inheritance is used for a different
purpose: as part of the original design of a program.

The next example models a database of employees of a widget
company.

We’ve simplified the situation so that only three kinds of
employees are represented.

Managers manage, scientists perform research to develop better
widgets, and labourers operate the dangerous widget-stamping
presses.

Saurav Samantaray Class Hierarchies 2 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Employee Class

The database stores a name and an employee identification
number for all employees, no matter what their category.

However, for managers, it also stores their titles and golf club
dues

For scientists, it stores the number of scholarly articles they have
published.

Labourers need no additional data beyond their names and
identification numbers.

Saurav Samantaray Class Hierarchies 3 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Employee Class

The example program starts with a base class employee.

This class handles the employee’s last name and employee
number.

From this class three other classes are derived: manager,
scientist, and labourer.

The manager and scientist classes contain additional
information about these categories of employee, and member
functions to handle this information.

the labourer class doesn’t have any additional data to be
introduced.

See ”employ.cpp”

Saurav Samantaray Class Hierarchies 4 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

UML class diagram for Employee Class

Saurav Samantaray Class Hierarchies 5 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

“Abstract” Base Class

Notice that we don’t define any objects of the base class
employee.
We use this as a general class whose sole purpose is to act as a
base from which other classes are derived.
The labourer class operates identically to the employee class,
since it contains no additional data or functions.
It may seem that the labourer class is unnecessary, but by
making it a separate class we emphasise that all classes are
descended from the same source, employee.
Also, if in the future we decided to modify the labourer class,
we would not need to change the declaration for employee.
Classes used only for deriving other classes, as employee is in
EMPLOY, are sometimes loosely called abstract classes,
meaning that no actual instances (objects) of this class are ever
created.

Saurav Samantaray Class Hierarchies 6 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Constructors and Member Functions

There are no constructors in either the base or derived classes, so
the compiler creates objects of the various classes automatically
when it encounters definitions like
manager m1, m2;
using the default constructor for manager calling the default
constructor for employee.
The getdata() and putdata() functions in employee
accept a name and number from the user and display a name and
number.
Functions also called getdata() and putdata() in the
manager and scientist classes use the functions in
employee, and also do their own work.
In manager, the getdata() function asks the user for a title
and the amount of golf club dues, and putdata() displays
these values.
In scientist, these functions handle the number of
publications.Saurav Samantaray Class Hierarchies 7 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Content

1 Public and Private Inheritance

2 Multiple Inheritance
Constructors in Multiple Inheritance

3 Ambiguity in Multiple Inheritance

Saurav Samantaray Class Hierarchies 8 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Public and Private Inheritance

See ”pubpriv.cpp”
The program specifies a base class, A, with private, protected,
and public data items.
Two classes, B and C, are derived from A.
B is publicly derived and C is privately derived.
functions in the derived classes can access protected and public
data in the base class.
Objects of the derived classes cannot access private or protected
members of the base class.
What’s new is the difference between publicly derived and
privately derived classes.
Objects of the publicly derived class B can access public
members of the base class A,
while objects of the privately derived class C cannot;
they can only access the public members of their own derived
class.

Saurav Samantaray Class Hierarchies 9 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Public and Private Inheritance

If we don’t supply any access specifier when creating a class, private
is assumed.

Saurav Samantaray Class Hierarchies 10 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Levels of Inheritance

Classes can be derived from classes that are themselves derived.

class A
{ };

class B : public A
{ };

class C : public B
{ };

Here B is derived from A, and C is derived from B.

The process can be extended to an arbitrary number of levels—D
could be derived from C, and so on.

suppose that we decided to add a special kind of labourer
called a foreman to the EMPLOY program.

Since a foreman is a kind of labourer, the foreman class
is derived from the labourer class

Saurav Samantaray Class Hierarchies 11 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

UML class diagram for New Employee

Saurav Samantaray Class Hierarchies 12 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Content

1 Public and Private Inheritance

2 Multiple Inheritance
Constructors in Multiple Inheritance

3 Ambiguity in Multiple Inheritance

Saurav Samantaray Class Hierarchies 13 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Multiple Inheritance

A class can be derived from more than one base class.
This is called multiple inheritance.

Figure 1: UML class diagram for multiple inheritance.

Saurav Samantaray Class Hierarchies 14 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Multiple Inheritance

The syntax for multiple inheritance is similar to that for single
inheritance.

the relationship is expressed like this:
class A // base class A
{ };
class B // base class B

{ };
class C : public A, public B // C is
derived from A and B
{ };
The base classes from which C is derived are listed following the
colon in C’s specification;

they are separated by commas.

Saurav Samantaray Class Hierarchies 15 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Member Functions in Multiple Inheritance

As an example of multiple inheritance, suppose that we need to
record the educational experience of some of the employees in
the EMPLOY program.
Let’s also suppose that, perhaps in a different project, we’ve
already developed a class called student that models students
with different educational backgrounds.
We decide that instead of modifying the employee class to
incorporate educational data, we will add this data by multiple
inheritance from the student class.
The student class stores the name of the school or university
last attended and the highest degree received.
Two member functions, getedu() and putedu(), ask the
user for this information and display it.
Educational information may not be relevant to every class of
employee.

Saurav Samantaray Class Hierarchies 16 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Member Functions in Multiple Inheritance

See ”empmult.cpp”.
Let’s suppose, that we don’t need to record the educational
experience of labourers;
it’s only relevant for managers and scientists.
We therefore modify manager and scientist so that they
inherit from both the employee and student classes.

Saurav Samantaray Class Hierarchies 17 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Member Functions in Multiple Inheritance

The getdata() and putdata() functions in the manager
and scientist classes incorporate calls to functions in the
student class, such as
student::getedu();
and
student::putedu();

These routines are accessible in manager and scientist
because these classes are descended from student.

Saurav Samantaray Class Hierarchies 18 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Constructors in Multiple Inheritance

Imagine that we’re writing a program for building contractors,
and that this program models lumber-supply items.
It uses a class that represents a quantity of lumber of a certain
type: 108-foot-long construction grade 2×4s, for example.
The class should store various kinds of data about each such
lumber item.
We need to know the length (3’–6”, for example) and we need to
store the number of such pieces of lumber and their unit cost.
We also need to store a description of the lumber we’re talking
about.
This has two parts.
The first is the nominal dimensions of the cross-section of the
lumber.
This is given in inches.
For instance, lumber 2 inches by 4 inches is called a two-by-four.
This is usually written 2×4.

Saurav Samantaray Class Hierarchies 19 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Constructors in Multiple Inheritance

We also need to know the grade of lumber—rough-cut,
construction grade, surfaced-four-sides, and so on.

We find it convenient to create a Type class to hold this data.

This class incorporates member data for the nominal dimensions
and the grade of the lumber, both expressed as strings, such as
2×6 and construction.

Member functions get this information from the user and display
it.

We’ll use the Distance class from previous examples to store the
length.

Finally we create a Lumber class that inherits both the Type
and Distance classes.

”englmult.cpp”.

Saurav Samantaray Class Hierarchies 20 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Constructors in Multiple Inheritance

The major new feature in this program is the use of constructors
in the derived class Lumber.
These constructors call the appropriate constructors in Type and
Distance.

No-Argument Constructor
The no-argument constructor in Type looks like this:
Type()
{ strcpy(dimensions, \N/A");

strcpy(grade, \N/A"); }
and in Distance class looks like:
Distance() : feet(0), inches(0.0) { }
The no-argument constructor in Lumber calls both of these
constructors.
Lumber():Type(), Distance(), quantity(0),

price(0.0) { }
The names of the base-class constructors follow the colon and
are separated by commas.Saurav Samantaray Class Hierarchies 21 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Constructors in Multiple Inheritance

Multi-Argument Constructors
The two-argument constructor for Type:
Type(string di, string gr) :
dimensions(di), grade(gr) { }
The constructor for Distance:
Distance(int ft, float in) : feet(ft),
inches(in) { }
The constructor for Lumber takes in values for their arguments.

In addition it has two arguments of its own: the quantity of
lumber and the unit price.
Lumber(string di, string gr, //args for Type

int ft, float in, //args for Distance
int qu, float prc) : //args for our data

Saurav Samantaray Class Hierarchies 22 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance
Constructors in Multiple Inheritance

Constructors in Multiple Inheritance

The constructor for Lumber calls both of the constructors i.e. of
Type and Distance.
....
Type(di, gr), //call Type ctor
Distance(ft, in), //call Distance ctor
quantity(qu), price(prc) //initlize our data

{ }
It makes two calls to the two constructors;

each of which takes two arguments,

and then initializes its own two data items.

Saurav Samantaray Class Hierarchies 23 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Content

1 Public and Private Inheritance

2 Multiple Inheritance
Constructors in Multiple Inheritance

3 Ambiguity in Multiple Inheritance

Saurav Samantaray Class Hierarchies 24 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Ambiguity in Multiple Inheritance

Odd sorts of problems may surface in certain situations involving
multiple inheritance.

Here’s a common one.

Two base classes have functions with the same name, while a
class derived from both base classes has no function with this
name.

How do objects of the derived class access the correct base class
function?

The name of the function alone is insufficient, since the compiler
can’t figure out which of the two functions is meant.

See ”ambigu.cpp”.

Both base classes A and B have a function
void show () {}
each.

Saurav Samantaray Class Hierarchies 25 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Ambiguity in Multiple Inheritance

Even though the body of each of the function is different, they
have the same protype.
If one uses the following command for an object objc of Class
C:
objc.show();
it leaves the compiler dumbfound.
The compiler is caught between the classes A and B, and there is
no extra information provided, so that it can make a choice.
In such a scenario the compiler wil throw out an error.
The problem is resolved using the scope-resolution operator to
specify the class in which the function lies.
objC.A::show(); refers to the version of show() that’s in
the A class, and;
objC.B::show(); refers to the version of show() that’s in
the B

Saurav Samantaray Class Hierarchies 26 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Ambiguity in Multiple Inheritance

Another kind of ambiguity arises if we derive a class from two
classes that are each derived from the same class.
Classes B and C are both derived from class A, and class D is
derived by multiple inheritance from both B and C.
Trouble starts if we try to access a member function in class A
from an object of class D.
In this example objD tries to access func().
However, both B and C contain a copy of func(), inherited
from A.
The compiler can’t decide which copy to use, and signals an
error.
The fact that such ambiguities can arise causes many experts to
recommend avoiding multiple inheritance altogether.
We should certainly not use it in serious programs unless we
have considerable experience.

Saurav Samantaray Class Hierarchies 27 / 28

Public and Private Inheritance
Multiple Inheritance

Ambiguity in Multiple Inheritance

Ambiguity in Multiple Inheritance
//diamond.cpp
//investigates diamond−shaped multiple inheritance
#include <iostream>
using namespace std;
//
class A
{

public:
void func();

};
class B : public A { };
class C : public A { };
class D : public B, public C { };
//
int main()
{

D objD;
objD.func(); //ambiguous: won't compile
return 0;

}
Saurav Samantaray Class Hierarchies 28 / 28

	Public and Private Inheritance
	Multiple Inheritance
	Constructors in Multiple Inheritance

	Ambiguity in Multiple Inheritance

