
File Input and Output

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

October 28, 2024

Saurav Samantaray File Input and Output 1 / 12

Redirecting Output

Being able to transfer data between applications is an essential
requirement of most scientific computing softwares.

We have already introduced basic C++ commands for writing
text and the contents stored by a variable to the console.

In a Linux based system this output may very easily be
redirected to a single file rather than the screen.

Should the executable file be ”test.exe”, this output may be
printed to the file ”test.txt” by executing the following

$./ test.exe > test.txt

There might be some terminal outputs we still may want to be
flashed on the screen.

For example if the program encounters a division by zero, we
would want it to get flashed on the screen right at the moment it
occurs instead of it getting stored, and then being accessed.

Saurav Samantaray File Input and Output 2 / 12

Redirecting Output

When the output is supposed to be redirected to file, in the way
discussed, we can still get console outputs by the using
std::cerr instead of std::cout

int x y;
if (y == 0)
{

std::cerr << ''Error −divison by zero'' << std::endl;
}

The syntax for std::cerr is identical to std::cout.

When the console output is not redirected to file there is no
difference between the effect of these two commands.

Upon output redirection to files only the std::cout are saved
in the file and std::cerr ouputs are still available at the
console

Saurav Samantaray File Input and Output 3 / 12

Writing to File

Storing output in a single file might be sufficient for some
applications.
But, for example if we are writing a finite difference code to
calculate the solution of a given differential equation, we may
want to store

the nodes of the mesh in one file,
the solution in another file, etc

Therefore it is necessary to be able to be write output to more
than one file.

C++ provides an extremely large number of commands for
printing to file.

That being said almost all the formats can be achieved by using a
very small subset of these commands.

Writing to, or reading from, file requires the additional header
file fstream.

Saurav Samantaray File Input and Output 4 / 12

Writing to File

See ”out.cpp”
First we declare an output stream variable write output,
by specifying it of type ofstream
along with this the file name, output.dat is also specified.
Next we check if the file is open via assert.
Writing to file is quite similar to console output,
we replace std::cout with write output, which writes
the entries to the file (output.dat) associated with the output
stream variable.
Finally, when all required data has been written to file, we ”close
the file handle”
Like console outputs, outputs to files are also buffered i.e. the
output may not be immediately written to the file.
Closing the file handle flushes the buffer: that is all data that has
been buffered is written to file before the computer executes any
further statements.

Saurav Samantaray File Input and Output 5 / 12

Writing to File

It is quite important that a file is closed as soon as all the relevant
data to be stored in it are available, as

if another part of the program reads a file which is still being
written to, then we cannot be certain what data, if any, has yet
been written to disk.

Closing the file handle has the further effect that no more data
can be written to this file:

this prevents the file being corrupted by mistakenly attempting to
write further data.

It is also possible to flush a buffer without closing the file handle.

This is done in a similar way as it is done for console output, as
shown bellow for the output stream variable write output

write output.flush();

Saurav Samantaray File Input and Output 6 / 12

Writing to File

It was mandated to check if a file is open, before attempting to
write data to it.

Why is this important?

There may be scenarios when the file cannot be opened, perhaps
we did not have permission to write to that file, or a directory we
have specified doesn’t exist;

then writing to the ofstream may cause no error even though
writing to the file is not possible.

For example if we renamed the location of the output file to a
folder we are restricted from writing to

ofstream write output (”/etc/output.dat”);

then we might expect the program to fail as we are unlikely to
have permission to write to the folder ”/etc/”.

However, without the test for the file being open the code will
exit normally, producing no output file.

Saurav Samantaray File Input and Output 7 / 12

Writing to File

The executable created from ”out.cpp” will create a new file,
”output.dat”, if this file does not already exist.

If this file does exist, the executable generated from the listing
above will delete the original file and write a new file with the
same name: the original contents of the file will be lost.

Whether or not the file ”output.dat” existed before once the code
is executed, there will be a file called ”output.dat” that is listed
below.

0 1
1 0
0 1

Suppose that, rather than deleting the file if it exists, we want our
code to append data to the end of this file.
this could be achieved by modifying
ofstream write output("output.dat"); to
ofstream write output("Output.dat", ios::app);

Saurav Samantaray File Input and Output 8 / 12

Writing to File

If the file ”output.dat” did not exist and we were to execute the
code, with the modified lines

it would then create the file ”output.dat” shown as before

If we were then to execute the code a second time we would then
end up with the file output.dat being modified as:

0 1
1 0
0 1
0 1
1 0
0 1

Saurav Samantaray File Input and Output 9 / 12

Setting the Precision of the Output

The key formatting command for scientific computing
applications is specification of the precision of the output.

See ”set pre.cpp”.

The number in brackets after the precision commands
specifies the number of significant figures that the output is
correct to.

When the precision is set to 10 significant figures, but only eight
significant figures will be printed in ”set pre.cpp”:

this is because the variable x is only given to eight significant
figures, and so the remaining accuracy requested is redundant.

Saurav Samantaray File Input and Output 10 / 12

Reading from File

When reading from file we first need to declare an input stream
variable in a similar way to the output stream variable.

and then specify the file that we wish to read.

As with output to file, the header file fstream should be
included.

Reading the file is then performed in a similar way to that
described for keyboard input (std::cin).

std::cin replaced by the input stream variable.

Suppose we want to input the file ”output.dat” created before

We know that this file has three rows and two columns, and so
we may read this file using the code

See ”inp.cpp”

The assertion ensures that ”output.dat” is on disk in the correct
location and with the correct access privileges:

if not, the assertion is tripped and the code is terminated.

Saurav Samantaray File Input and Output 11 / 12

Reading from File

In the previous code, we knew that the file we were reading has
three rows and two columns, and so we knew when writing this
code that the statements inside the for loop had to be executed
three times.
In many scientific computing applications we will want to read a
file, but do not know the length of the file in advance.
For example, we may know that a file contains a list of the
coordinates of an unknown number of points in two dimensions:
the file therefore has two columns, but an unknown number of
rows.
We cannot use a for loop as we do not know how many times
the statements in this loop need to be executed.
Instead, we use the Boolean variable associated with the input
stream variable read file.eof().
This variable takes the value true when the end of the file is
reached, and allows us—through the use of a while
statement—to carry on reading the file while this variable takes
the value false. (See ”mod inp.cpp”)

Saurav Samantaray File Input and Output 12 / 12

