
Templates

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

October 29, 2024

Saurav Samantaray Templates 1 / 11



Templates

If we want to write a function that returns the larger of two
numbers, and we want this function to be used for both integer
variables and double precision floating point variables, then we
could use function overloading and write two functions:

one for integer variables and the other for double precision
floating point variables.

Both of these functions would require only a few lines of code,
and it would not be difficult to maintain both functions.

For larger functions maintaining more than one function to do
the same operations may be problematic.

This may be avoided by the use of templates, a feature of the
C++ language that allows very general code to be written.

Saurav Samantaray Templates 2 / 11



Templates to Control Dimensions and Verify Sizes

Many scientific computing applications are underpinned by
vectors and matrices.

These are represented in C++ by arrays.

Under normal circumstances there is no check, when we attempt
to access elements of an array, that the index is a valid index.

For example, in the code fragment below we attempt to access
the element with index 7 when the array only has 5 elements.

double A[5];
A[7] = 5.0;

Although this is clearly an error, it may not trigger a compiler or
run-time error.

The most likely outcome when code including these lines is
executed is a segmentation fault or an incorrect answer.

Saurav Samantaray Templates 3 / 11



Templates to Control Dimensions and Verify Sizes

If this fragment is part of a large program, it could be difficult to
locate this error.

It would therefore be useful if we could use arrays with an
additional feature that a check for validity of the index is
performed each time an element of the array is accessed.

This may be achieved using the class shown below, which is
referred to as a templated class.

Template Declaration Syntax
template <parameter list>
template function / class declaration..

The keyword template marks the start of a template
declaration and is followed by the template parameter list.

This parameter list contains the keyword typename that defines
the template parameter objType, making it a placeholder for
the type of the object that the template is being instantiated for.

Saurav Samantaray Templates 4 / 11



Template For Classes

A simple template class that uses a single parameter T to hold a
member variable and can be written as the following:

template <typename T>
class HoldVarTypeT
{

private:
T value;

public:
void SetValue (const T& newValue)
{ value = newValue; }

T& GetValue() {return value;}
};

The type of the variable value is T, and that is assigned at the
time the template is used, that is, instantiated.
a sample usage of this template class:

HoldVarTypeT <int> holdInt; // template instantiation for int
holdInt.SetValue(5);
cout << ''The value stored is: '' << holdInt.GetValue() << endl;

Saurav Samantaray Templates 5 / 11



Templates to Control Dimensions and Verify Sizes

See ”DoubleVector.hpp”

The class in the listing allows us to declare instances of
DoubleVector, specifying the length of the array.

The entries of the array are private members of this class and so
can’t be accessed in the normal way that we would access
elements of an array.

Instead we access members of this class by overloading the
square bracket operator.

Saurav Samantaray Templates 6 / 11



Templates to Control Dimensions and Verify Sizes

Overloading this operator allows us to check that the index is a
valid index before returning the variable requested.

using this class requires us to declare the array v as an instance
of a DoubleVector, with the size of this array being enclosed
within pointed brackets.

Subsequently this array is accessed in exactly the same way as a
normal array,

but with the additional feature that a check is carried out on the
index every time an element of the array is accessed through the
overloading of the square bracket operator.

DoubleVector<5> v;

the above syntax is quite similar to
double v[5];

Saurav Samantaray Templates 7 / 11



Templates for Polymorphism

Programming languages, distinguish between integer variables
and floating point variables, for reasons which are quite prudent.

the argument(s) used to access an element of an array may only
take integer values which provides one level of validation that
the index is correct.

integers may be stored much more efficiently than floating point
variables.

One slight drawback in having to distinguish between these
variables is that if we want to write a function that is valid for all
numerical variables, i.e. , both integers and floating point
variables, we have to write more than one instance of the same
function

Templates, however, provide a way around this.

Saurav Samantaray Templates 8 / 11



Templates for Polymorphism

The program ”run poly.cpp” demonstrates how a function
GetMaximum that returns the maximum of two numbers, either
integers or floating point variables, may be written.

The code is very similar to the code that we would write to calculate
the maximum of two numbers, with two important differences.

The first difference is that the function prototype in the listing specifies
that the function is defined for a general class T,

and that the return type and both function arguments will be instances
of the same class T.

To call the function, we have to put the data type used in angled
brackets as is shown.

The function GetMaximum demonstrates polymorphism, because it
can perform the same operation on different types of input argument.

This type of polymorphism is also called static polymorphism or
compile-time polymorphism,

because when the compiler sees the listing it makes a specific version
of GetMaximum ready for the int or double type.

Saurav Samantaray Templates 9 / 11



Declaring Templates with Multiple Parameters

The template parameter list can be expanded to declare multiple
parameters separated by a comma.
So, if we want to declare a generic class that holds a pair of
objects that can be of differing types,
we can do so using the construct as shown in the following
sample:

template <typename T1, typename T2>
class HoldsPair
{

private:
T1 value1;
T2 value2;

public:
// Constructor that initializes member variables

HoldsPair (const T1& val1, const T2& val2)
{

value1 = val1;
value2 = val2;

};
// ... Other member functions };

Saurav Samantaray Templates 10 / 11



Declaring Templates with Multiple Parameters

In this example, class HoldsPair accepts two template
parameters named T1 and T2.

We can use this class to hold two objects of the same type or of
different types

// A template instantiation that pairs an int with a double
HoldsPair <int, double> pairIntDouble (6, 1.99);

// A template instantiation that pairs an int with an int
HoldsPair <int, int> pairIntDouble (6, 500);

Saurav Samantaray Templates 11 / 11


