
Slides-2

Saurav

1/57

C++ Programming Basics
Procedural Aspects

Saurav Samantaray 1

1Department of Mathematics
IIT Madras

August 12, 2024

Slides-2

Saurav

2/57

The Very First C++ Code

Let the computer greet you.

#include <iostream >

using namespace std;

// every program has a main

int main()

{

// print hello world and shift to

// the next line

cout << ‘‘Hello World’’ << endl;

return 0;

}

Save the above into a file ”hello.cpp”.

Slides-2

Saurav

3/57

Compiling a C++ Code

g++ -c hello.cpp.

This only compiles the code and checks if all the syntaxes
make sense or not.

How do we run this?

g++ -o hello.exe hello.cpp

./hello.exe.

Slides-2

Saurav

4/57

Program To Illustrate Basic Features of C++

Task Write a program that takes in two integers and as input
and prints the sum of all integers between them.

It should be able to take in two integers, lets say ”a” and
”b”.

It should print the final sum.

It should have a way to understand a > b or vice-versa.

Slides-2

Saurav

5/57

Variable Declaration

int a, b;

Explicitly tell the computer which type of variable you
want to use.

Moreover, computer creates and allocates memory for this.

Basic Numerical Variables:

int

double

Operation which can be performed on numerical variables:

a = a + b; a += b;

a = a - b; a -= b;

a = a * b; a *= b;

a = a / b; a /= b;

a = a % b; a %= b;

a = a + 1; a++;

a = a - 1; a --;

Slides-2

Saurav

6/57

The ”if ” statement

if (a>b)

{

cout <<’’since a > b we need to swap

between them’’ ;

....

It is used to control the flow of the program.

Control options are:

if (??)

{
...

}
else

{
...

}

Slides-2

Saurav

7/57

nested if’s;
if (x > z)

{
if (p > q)

{
// Both conditions have to be met

y = 10.0;

}
}
multiple if’s;
if (i > 100)

{
y = 2.0;

else if (i < 0)

{
y = 10.0

}
else

{
y = 5.0; }

Slides-2

Saurav

8/57

Loops

for (int i = a; i <= b; i++)

{

Executes a collection of statements certain number of
times.

int i = a; this both declares and initialises ”i”.

i < = b; checks for the validity until when the loop has
to run.

i++ increments the loop counter.

Slides-2

Saurav

9/57

Other loops

The while loop:
while (x > 1.0)

{
x * = 0.5;

}
The do while loop:
do

{
x *= 0.5 ;

} while (x > 1.0)

Slides-2

Saurav

10/57

Arrays

For a type T, T[n] is the type “one-dimensional array of
n elements of type T”, where n is a positive integer.

the elements are indexed from 0 to n − 1 and are stored
contiguously one after another in memory, e.g.

float vec [3]; // array of 3 floats : vec[O] ,

// vec [1] ,vec [2]

int sg [30]; // array of 30 ints: sg[O],

// ..., sg[29]

vec[0] = 1.0; // accessing element 0 of vec

vec[1] = 2.0; // accessing element 1 of vec

for(int i = 0; i < 30; i++) sg[i] = i*i + 7;

int j =sg [29]; // accessing the last

// element of sg

Slides-2

Saurav

11/57

Arrays

the first two statements declare vec and sg to be
one-dimensional arrays with 3 and 30 elements of type
float and
textttint, respectively

a for loop is often used to access all elements of a 1D
array.

a one-dimensional array can be used to store elements of a
vector

Slides-2

Saurav

12/57

2D-Arrays

Two-dimensional arrays having m rows and n columns
(looking like a matrix) can be declared as T[m][n], for
elements of type T

the row index changes from 0 to m − 1 and the column
index from 0 to n − 1

double mt [2][5]; // 2D array of 2 rows

// and 5 columns

for (int i = 0; i < 2; i++) {

for (int j = 0; j < 5; j++) {

mt[i][j] = i + j;

}

}

Slides-2

Saurav

13/57

Structures

Unlike an array that takes values of the same type for all
elements, a struct can contain values of different types, e.g.

struct point2d { // a structure of 2D points

char nm; // name of the point

float x; // x-coordinate of point

float y; // y-coordinate of point

};

This defines a new data type called point2d.

note the semicolon after the right brace

this is one of the very few places where a semicolon is
needed following a right brace

Slides-2

Saurav

14/57

Structures

Structure members are accessed by the . (dot) operator, e.g.

point2d pt; // declare pt of type point2d

pt.nm = ’f’; // assign ’f’ to its field nm

pt.x = 3.14; // assign 3.14 to its field x

pt.y = -3.14; // assign -3.14 to its field y

double a = pt.x; // accessing member x of pt

char c = pt.nm; // accessing member nm of pt

Slides-2

Saurav

15/57

Structures

A variable of a struct represents a single object and can be
initialised by and assigned to another variable
(consequently, all members are copied)

point2d pt2 = pt; // initialise pt2 by pt , membervise copy

pt3 = pt2; // assign pt2 to pt3 , membervise copy

A structure can also be initialised in a way similar to arrays:
point2d pt3 = ’F’, 2.17, -7.8; // OK, initialisation

Slides-2

Saurav

16/57

Derived Types

Basic Data Types

int

char

double, etc.

Derived Data Types

Arrays;

Structures;

enumeration types: for representing a specific set of values

unions for storing elements of different types when only
one of them is present at a time

pointers for manipulating addresses or locations of
variables

and so on...

Slides-2

Saurav

17/57

Enumerations

The enumeration type enum is for holding a set of integer
values specified by the user:
enum

blue,yellow,pink=20,black,red=pink+5,green=20;

is equivalent to
const int blue = 0, yellow = 1, pink = 20,

black = 21, red = 25, green = 20;

by default, the first member (enumerator) in an enum

takes value 0 and each succeeding enumerator has the next
integer value, unless other integer values are explicitly set

the constant pink would take value 2 if it were not
explicitly defined to be 20 in the definition

the member black has value 21 since the preceding
member pink has value 20

note that the members may not have to take on different
values

Slides-2

Saurav

18/57

Enumerations

Enumeration types are usually defined to make code more
self-documenting; i.e easier for humans to understand

here are a few more typical examples:

enum bctype {Dirichlet , Neumann , Robin};

enum vars {DN , VX , VY , VZ , PR};

enum Day {SUN , MON , TUE , WED , THU , FRI , SAT};

enum Color {RED , ORANGE , YELLOW , GREEN ,

BLUE , VIOLET };

enum Suit{CLUBS , DIAMONDS , HEARTS , SPADES };

enum Roman {I=1, V=5, X=10, L=50, C=100,

D=500, M=1000};

Slides-2

Saurav

19/57

Unions

Unions, like structures, contain members whose individual
data types may differ from one another

however, the members within a union all share the same
storage area within the computers memory, whereas each
member within a structure is assigned its own unique
storage area

thus, unions are used to conserve memory

they are useful for applications involving multiple
members, where values need not be assigned to all of the
members at any one time

all members take up only as much space as its largest
member

Slides-2

Saurav

20/57

Unions

union value {//i,d,c cannot be used at same time
int i;

double d; // d is largest member in storage
char c;

};
the union value has three members: i, d, and c

only one of which can exist at a time

thus, sizeof(double) bytes of memory are enough for storing an
object of value

members of a union are also accessed by the . (dot) operator; it can
be used as the following:

int n;

cin >> n; // n is taken at run-time
value x; // x is a variable of type value
if (n == 1) x.i = 5;

else if (n == 2) x.d = 3.14;

else x.c = ’A’;

double v = sin(x.d) //error! x.d may not exist at this time

Slides-2

Saurav

21/57

Unions

Suppose that triangle and rectangle are two structures and a figure can be
either a triangle or a rectangle but not both; then a structure for figure can
be declared as struct figure2d {
char name;

bool type; // 1 for triangle, 0 for rectangle
union { // an unnamed union

triangle tria;

rectangle rect;

};
};

If fig is a variable of type figure2d, its members can be accessed as
fig.name, fig.type, fig.tria, or fig.rect

since a figure can not be a rectangle and a triangle at the same time,
using a union can save memory space by not storing triangle and
rectangle at the same time

the member fig.type is used to indicate if a triangle or rectangle is
being stored in an object fig (e.g. fig.rect is defined when fig.type is
0).

Slides-2

Saurav

22/57

Pointers

For a type T , T∗ is the pointer to T . A variable of type T∗
can hold the address or location in memory of an object of type
T .

int* p; // p is a pointer to int

declares the variable p to be a pointer to int; it can be used
to store the address in memory of integer variables

If v is an object, &v gives the address of v (the address-of
operator &)

if p is a pointer variable, ∗p gives the value of the object
pointed to by p

we also informally say that ∗p is the value pointed to by p

the operator ∗ is called the dereferencing or indirection
operator

Slides-2

Saurav

23/57

Pointers

int i = 5; // i is int, value of object i is 5

int* pi = &i; //pi is a pointer to int

// and assign address of i to pi

int j = *pi; //value of object pointed to by pi

//is assigned to j, so j=5

double* d = &j; // illegal

The second statement above declares pi to be a variable
of type: pointer to int, and initialises pi with the address
of object i
another way of saying that pointer pi holds the address of
object i is to say that pointer pi points to object i
the third statement assigns ∗pi , the value of the object
pointed to by pi , to j
the fourth statement is illegal since the address of a
variable of one type can not be assigned to a pointer to a
different type

Slides-2

Saurav

24/57

Pointers

For a pointer variable p, the value *p of the object that it points to can
change; so can the pointer p itself, e.g.

double d1 = 2.7, d2 = 3.1;

double* p = &d1; // p points to d1 ,

//now *p = 2.7

double a = *p; // a = 2.7

p = &d2; // p now points to d2, *p = 3.1

double b = *p; // b = 3.1

*p = 5.5; // value p points to is now 5.5

double c = *p; // c = 5.5

double d = d2; // d = 5.5, since *p=5.5

Since p is assigned to hold the address of d2 in the statement p =
&d2, then *p can also be used to change the value of object d2 as in
the statement *p = 5.5

when p points to d2, *p refers to the value of object d2 and
assignment *p = 5.5 causes d2 to equal 5.5

Slides-2

Saurav

25/57

Pointers As Arrays

A sequence of objects can be created by the operator new
and the address of the initial object can be assigned to a
pointer

then this sequence can be used as an array of elements

i n t n = 100 ; // n can a l s o be computed at run−t ime
doub l e ∗ a ; // d e c l a r e a to be a p o i n t e r to doub l e
a = new doub l e [n] ; // a l l o c a t e space f o r n doub l e o b j e c t s
// a p o i n t s to the i n i t i a l o b j e c t

the last two statements can also be combined into a more
efficient and compact declaration with an initialisation:
double* a = new double [n];

// allocate space of n objects

Slides-2

Saurav

26/57

Pointers As Arrays

In allocating space for new objects, the keyword new is
followed by a type name, which is followed by a positive
integer in brackets representing the number of objects to
be created
the positive integer together with the brackets can be
omitted when it is 1.
this statement obtains a piece of memory from the system
adequate to store n objects of type double and assigns the
address of the first object to the pointer a.
these objects can be accessed using the array subscripting
operator [], with index starting from 0 ending at n − 1
pictorial representation:

Slides-2

Saurav

27/57

Pointers

After their use, these objects can be destroyed by using the
operator delete :
delete [] a ; // free space pointed to by a

The system will automatically find the number of objects
pointed to by a (actually a only points to the initial
object) and free them

then the space previously occupied by these objects can be
reused by the system to create other objects

since the operator new creates objects at run-time, this is
called dynamic memory allocation

the number of objects to be created by new can be either
known at compile-time or computed at run-time, which is
preferred over the built-in arrays in many situations

Slides-2

Saurav

28/57

Pointers

In contrast, creation of objects at compile-time is called
static memory allocation

thus there are two advantages of dynamic memory
allocation: objects no longer in use can be deleted from
memory to make room to create other objects, and the
number of objects to be created can be computed at
run-time

automatic variables represent objects that exist only in
their scopes

in contrast, an object created by operator new exists
independently of the scope in which it is created

such objects are said to be on the dynamic memory (the
heap or the free store)

they exist until being destroyed by operator delete or to
the end of the programme

Slides-2

Saurav

29/57

Pointers

An object can also be initialised at the time of creation using new with the
initialised value in parentheses, e.g.
double* y = new double (3.14); // *y = 3.14

int i = 5;

int* j = new int (i); // *j = 5, but j does not point to i

Declarations of forms T * a; and T * a; are equivalent, as in
int* ip; //these declarations are equivalent

int *ip;

However, the following two declarations are not equivalent
int* i, j; //i and j are pointers

int *i, j; //i is a pointer to int but j is an int

An array of pointers and a pointer to an array can also be defined:
int* ap[10]; //ap is an array of 10 pointers to int

int (*vp)[10]; //vp is a pointer to an array of 10 int

Notice that parentheses are needed for the second statement above, which
declares vp to be a pointer to an array of 10 integers. The first statement
declares ap to be an array of 10 pointers, each of which points to an int

Slides-2

Saurav

30/57

Multiple Pointers

Two-dimensional arrays and matrices can be achieved through double
pointers (a pointer to a pointer is called a double pointer)
int** mx; //double pointer: a pointer to a pointer

mx = new int* [n]; //new space to hold n pointers to int

//mx points to initial element mx[0]

for (int i = 0; i < n ; = i ++) mx[i] = new int [m];

//create m objects for each of the n pointers

//mx[i] points to initial element mx[i][0]

The first statement above declares mx to be a pointer to a pointer,
called a double pointer

the second statement allocates n objects of type int* and assigns the
address of the initial element to mx

it happens that these n objects are pointers to int

now, mx has value &mx[0]

Slides-2

Saurav

31/57

Multiple Pointers

Using pointers an n by n lower triangular or symmetric matrix can be
defined very conveniently; to save memory, zero or symmetric elements
above the main diagonal are not stored

doub l e ∗∗ tm = new doub l e ∗ [n] ;

f o r (i n t i = 0 ; i < n ; i++) tm [i] = new doub l e [i +1] ;
// a l l o c a t e (i +1) e l ement s f o r row i

f o r (i n t i = 0 ; i < n ; i++) // a c c e s s i t s e l ement s
f o r (i n t j = 0 ; j <= i ; j++)

tm [i] [j] = 2 .1 / (i + j + 1) ;

f o r (i n t i = 0 ; i < n ; i++) d e l e t e [] tm [i] ;
d e l e t e [] tm ; // a f t e r u s i n g i t , d e l e t e space

tm is created to store an n by n lower triangular matrix. Since the lower
triangular part of a matrix contains i + 1 elements in row i for
i = 0, 1, ..., n − 1, only i + 1 doubles are allocated for tm[i]

Slides-2

Saurav

32/57

Multiple Pointers

Note that arrays can only store rectangular matrices

using rectangular matrices to store triangular matrices or
symmetric matrices would waste space

Slides-2

Saurav

33/57

Constant Pointers

A constant pointer is a pointer that can not be redefined to
point to another object; that is, the pointer itself is a constant.
It can be declared and used as

i n t m = 1 , n = 5 ;
i n t ∗ con s t q = &m; // q i s a con s t po i n t e r ,

// p o i n t s to m

q = &n ; // e r r o r , c on s t an t q can not change
∗q = n ; // ok , v a l u e tha t q p o i n t s to i s now n
i n t k = m; // k = 5

Although q is a constant pointer that can only point to object
m, the value of the object that q points to can be changed to
the value of n, which is 5; thus, k is initialised to 5.

Slides-2

Saurav

34/57

Constant Pointers

A related concept is a pointer that points to a constant
object, i.e. if p is such a pointer, then the value of the
object pointed to by p can not be changed

it only says that *p can not be changed explicitly by using
it as value

however, the pointer p itself can be changed to hold the
address of another object. It can be declared and used as

i n t m = 1 , n = 5 ;
con s t i n t ∗ p = &m; // p p o i n t s to con s t an t o b j e c t
∗p = n ; // e r r o r , ∗p can not change e x p l i c i t l y
p = &n ; // ok , p o i n t e r i t s e l f can change

There is some subtlety involved here; look at the example:

Slides-2

Saurav

35/57

Constant Pointers

i n t m = 1 , n = 5 ;
con s t i n t ∗p = &m; // p p o i n t s to m, so ∗p becomes 1
i n t i = ∗p ; // ∗p = m = 1 , so i = 1
m = 3 ; // m=3, so ∗p becomes 3
i n t j = ∗p ; // ∗p = 3 , so j = 3
p = &n ; // ok , p i t s e l f can change , ∗p = 5
i n t k = ∗p ; // ∗p = n = 5 , so k = 5

Since p points to m at first, the assignment m = 3 changes ∗p
to 3. Then the assignment p = &n changes ∗p to the value of
n, which is 5. In other words, ∗p has been changed implicitly

Slides-2

Saurav

36/57

Constant Pointers

To avoid the subtlety above, a const pointer that points to a
const object can be declared:

i n t m = 1 , n = 5 ;
con s t i n t ∗ con s t r = &m;
// r i s a con s t p o i n t e r t ha t p o i n t s to a con s t v a l u e
i n t i = ∗ r ; // i = 1 , s i n c e ∗ r = m = 1
r = &n ; // e r r o r , r i s con s t p o i n t e r
∗ r = n ; // e r r o r , r p o i n t s to con s t v a l u e
m =3; // t h i s i s the on l y way to change ∗ r
i n t j = ∗ r ; // j = 3

Since r is a const pointer that points to a const value m, it can
not be redefined to point to other objects, and *r can not be
assigned to other values. The only way to change *r now is
through changing m.

Slides-2

Saurav

37/57

Void and Null Pointers

The void pointer (void*) points to an object of unknown
type

a pointer of any type can be assigned to a variable of type
void*, and two variables of type void* can be compared
for equality and inequality

vo i d ∗ pv ; // pv i s a vo i d p o i n t e r
i n t ∗ p i ; // p i i s i n t p o i n t e r
pv = p i ; // i m p l i c i t c o n v e r s i o n from

// i n t ∗ to vo i d ∗

its primary use is to define functions that take arguments
of arbitrary types or return an untyped object

a typical example is the C quicksort function qsort(),
declared in ⟨stdlib.h⟩, that can sort an array of elements of
any type

see the book of Stroustrup for more details

Slides-2

Saurav

38/57

Void and Null Pointers

The null pointer points to no object at all. It is a typed pointer
(unlike the void pointer) and has the integer value 0

if at the time of declaration, a pointer can not be assigned to a
meaningful initial value, it can be initialised to be the null pointer

double* dp = 0; // dp initialised to 0, dp is null pointer

this statement is an initialisation, which declares dp to be a pointer
to double and initialises dp with the value 0

since no object is located at address 0, dp does not point to any
object

later, dp can be assigned to hold the address of some object of type
double:

doub l e d = 55 ;
dp = &d ; // ∗dp= 55 .0
∗dp = 0 ; // i t c au s e s d = 0 . 0 , dp s t i l l p o i n t s to d

Slides-2

Saurav

39/57

Pointers to Structures

A pointer can point to a structure
in this case, its members are accessed using the − >
operator
space for structure objects can be allocated by the
operator new and freed by delete

po in t2d ab = { ’F ’ , 3 , −5}; // ab i s o f type po in t2d
po in t2d ∗ p = &ab ; // l e t p po i n t to ab
char name = p−>nm; // a s s i g n nm f i e l d o f p to name
doub l e xpos = p−>x ; // a s s i g n x f i e l d o f p to xpos
doub l e ypos = p−>y ; // a s s i g n y f i e l d o f p to ypos

p−>x = 15 . 0 ; // ab . x = 15
p−>y = 26 . 0 ; // ab . y = 26
p−>nm = ’h ’ ; // ab .nm = ’h ’

po i n t2d ∗ q = new po in t2d ; // a l l o c a t e space f o r q
q−>x = 5 ; // a s s i g n v a l u e to i t s member
d e l e t e q ; // d e a l l o c a t e space

Slides-2

Saurav

40/57

Pointers to Char

By a convention in C, a string constant is terminated by the null
character ’\0’, with value 0

thus, the size of “hello” is 6 and its type is const char[6] with
the last element equal to ’\0’

due to its compatibility to C, C++ allows one to assign a string
constant to char* directly

char ∗ s t r = ” h e l l o ” ; // a s s i g n s t r i n g con s t an t to cha r ∗
s t r [4] = ’ o ’ ; // e r r o r , s t r i n g con s t an t can not change

char s t r 2 [] = ” h e l l o ” ; // a r r a y o f 6 char , s i z e o f (s t r 2) =
s t r 2 [4] = ’ o ’ ; // OK, now s t r 2 = ” h e l l o ”

char ∗ s t r 3 = new char [5] ;
s t r 3 [4] = ’ o ’ ; // OK
d e l e t e [] s t r 3 ;

Slides-2

Saurav

41/57

Pointers and Arrays

As in C, pointers and arrays are closely related

the name of an array can be used as a const pointer to its
initial element

i n t v [5] = {6 , 9 , 4 , 5 , 7} ;
i n t ∗ q = &v [0] ; // po i n t to i n i t i a l e l ement . ∗q = 6
i n t ∗ p = v ; // po i n t to i n i t i a l e l ement . ∗p = 6

i n t ∗ r = &v [5] ; // po i n t to l a s t −p l u s −one e lement
// but ∗ r i s unde f i n ed

i n t ∗ s = v + 5 ; // p o i n t e r a r i t hme t i c , ∗ s i s unde f i n ed

It is legal to declare a pointer to the last-plus-one element of
an array. Since it does not point to any element of the array,
the value that such a pointer points to is undefined.

Slides-2

Saurav

42/57

Blocks

A block is any piece of code between curly brackets.

A variable, when declared inside a block, may be used
throughout that block,

but only within that block

{
i n t i ;
i = 5 ;
{

i n t j ;
i = 10 ;
j = 10 ;

}
j = 5 ; // i n c o r r e c t j i s not d e c l a r e d he r e

}

j is said to be out of scope

Slides-2

Saurav

43/57

Functions

there is serious limitations to being restricted to writing
codes that may be placed just inside curly brackets after
the initial line of code ”int main () ”

if we were to apply the same operations in different places
when writing code

we would have to repeat the lines of the code that
performed these operations everywhere in the code where
they were required.

It would be much more convenient if we could write a
function that we could call whenever we wanted to
perform these operations.

Slides-2

Saurav

44/57

Simple Functions, Declaration and Call

A simple program that writes and uses a function to determine
the minimum value of two double floating point variables x and
y and stores it in the double precision variable minimum

// De c l a r a t i o n o f the f u n c t i o n
doub l e CalculateMinimum (doub l e a , doub l e b) ;

i n t main ()
{

doub l e x = 4 . 0 , y = −8.0;
doub l e minimum value = CalculateMinimum (x , y) ;

cout << ‘ ‘ The minimum of ‘ ‘ << x << ‘ ‘ and ‘ ‘ << y
<< ‘ ‘ i s ‘ ‘ << minimum value << end l ;

r e t u r n 0 ;
}

The function must be declared before it can be called anywhere
in the code.

Slides-2

Saurav

45/57

Simple Functions, Definition

the definition can be made anywhere in the code as long
as the declaration was done earlier before the first call
once declared the programme looks for a valid definition
which has the same prototype as of the declaration

// d e f i n i t i o n o f the f u n c t i o n
doub l e CalculateMinimum (doub l e a , doub l e b)
{

doub l e minimum ;
i f (a < b)
{

minimum = a ;
}
e l s e // a > b
{

minimum = b ;
}

r e t u r n minimum ;
}

Slides-2

Saurav

46/57

Passing Pointers as Function Arguments

any changes to a variable made inside a function will have no effect
outside the function.

avoids unintentional alteration and keeps it local (advantage)

however, there are occasions where we do want changes to a variable
inside a function to have an effect outside a function.

if a complex number is given in polar form z = re iθ

we may wish to get the real part (x) and imaginary part (y) return
back from the function

but a function can return only one variable

It would be useful to include variables x and y in the function call.

this would not work either, as values assigned inside the function
would not have any effect outside.

Fortunately pointers provide with one way around this problem.

instead of sending the variables x and y to the function we send
address of theses variables

Slides-2

Saurav

47/57

Passing Pointers as Function Arguments

i n t main ()
{
. . .

Ca l c u l a t eRea lAnd Imag i na r y (r , theta , &x , &y) ;
. . . .

v o i d Ca l cu l a t eRea lAnd Imag i na r y (doub l e r , doub l e theta ,
doub l e ∗ p r e a l ,
doub l e ∗ p Imag ina ry)

.

the third and fourth arguments are pointers to-that is, the addresses
of the real part and imaginary part

we send the address of these variables to the function,

behind the scenes a copy of these addresses is made, and these copies
are used in the function

these copies refer to the same memory as the original variables

so it is this memory that the results are stored in

Slides-2

Saurav

48/57

Sending Arrays to Functions

when sending arrays to a function, whether memory being
dynamically allocated or not it is the address of the first element of
the array that is being sent to the function

changes to this address will not have an effect in the code from
which the function is called:

however, the contents of this address- that is, the contents of the
array- may be changed

any changes made to an array inside a function will have an effect
when that variable is used subsequently outside the function

vo i d DoSomething (doub l e u [] , doub l e A [] [1 0] ,
doub l e B [1 0] [1 0]) ;

we donot have to specify the size of the first index of an array in the
function prototype

the size is computed by the compiler, it is ignored even if included
during compilation

however the size of every subsequent indices are crucial

Slides-2

Saurav

49/57

Reference Variables

an alternate to using pointers to allow changes made to a
variable within a function to have an effect outside the
function is to use reference variables

these are variables that are used inside a function that are
a different name for the same variable as that sent to a
function

while using reference variables any changes inside the the
function will have an effect outside the function

these are much easier to use than pointers: all that has to
be done is the inclusion of the symbol & before the
variable name in the declaration of the function and the
prototype

this indicates that the variable is reference variable

Slides-2

Saurav

50/57

Reference Variables

. . . .
Ca l c u l a t eRea lAnd Imag i na r y (r , theta , x , y) ; // f o r r e f e r e n c e
. . . .

v o i d Ca l cu l a t eRea lAnd Imag i na r y (doub l e r , doub l e theta ,
doub l e& r e a l ,
doub l e& Imag ina r y)

{
r e a l = r ∗ cos (t h e t a) ;
Imag ina r y = r ∗ s i n (t h e t a) ;

}

the references behave like pointers behind the scene

but without having to convert to an address with & on the
function call

they provide a layer of syntatic sugar to ease the
programmer’s burden

Slides-2

Saurav

51/57

Argument Passing

pass by value does not change the value of the arguments and thus is
safe

on the other hand, pass by reference or pass by value for pointers
usually implies that the values of the arguments are going to be
changed through the function call, unless they are explicitly told not
to, using the keyword const

i n t g (i n t va l , c on s t i n t& r e f) {
// r e f i s not supposed to be changed
v a l ++;
r e t u r n r e f + v a l ;
}

because of the const specifier, the compiler will give a warning if ref is to
be changed inside the function, e.g. it is illegal to write
void w (const int& ref) {
ref = 5; // WRONG, ref is not writable

}

Slides-2

Saurav

52/57

Default Values for Function Arguments

If we are writing a function to implement an iterative technique,
auch as the Newton-Raphson technique for finding a root of a
nonlinear equation

we will be content if the solution is accurate upto a tolerance
(may be 10−6!!)

rarely we would want to change the tolerance

one may want to restrict the function evaluation to some extent

if its implemented via a while loop numerical rouding off errors
may hinder the solution to cut through the tolerance to stop the
process

is therefore quite prudent to write a function for implementing
the Newton-Raphson, that sets a default tolerance for the
solution

Slides-2

Saurav

53/57

and a default maximum iterations

we would be able to call this function without specifying these
default values

however if we did want to call this function with different values
then we would be able to do this as well (see new-rap.cpp)

// Funct i on d e c l a r e d wi th d e f a u l t v a l u e s
vo i d Ca l cu la teCubeRoot (doub l e& x , doub l e k ,

doub l e t o l e r a n c e = 1 .0 e−6,
i n t ma x i t e r a t i o n s = 100) ;

// use both the d e f a u l t v a l u e s
Ca l cu la teCubeRoot (x , k) ;
// c a l c u l a t e cube r oo t u s i n g a t o l e r a n c e o f 0 .001 and the
// d e f a u l t maximum number o f i t e r a t i o n s
doub l e t o l e r a n c e = 0 . 0001 ;
Ca l cu la teCubeRoot (x , k , t o l e r a n c e) ;
// c a l c u l a t e cube r oo t u s i n g a t o l e r a n c e o f 0 .001 and a
// maximum number o f i t e r a t i o n s o f 50
i n t ma x i t e r a t i o n s = 500 ;
Ca l cu la teCubeRoot (x , k , t o l e r a n c e , ma x i t e r a t i o n s) ;

Slides-2

Saurav

54/57

Function Overloading

suppose we want to write a function to multiply a vector by a scalar
and another function to multiply a matrix by a scalar

it would be desirable to call both these functions Multiply.

this is alloweed in C++

we write different function prototypes and functions for both of these
operations;

the compiler then chooses the correct function based n the input
arguments

this is know as function overloading

vo i d Mu l t i p l y (doub l e s c a l e r , doub l e ∗ u , doub l e ∗ v , i n t n) ;
v o i d Mu l t i p l y (doub l e s c a l e r , doub l e ∗∗ A, doub l e ∗∗ B, i n t n) ;

// v e c t o r m u l t i p l i c a t i o n
Mu l t i p l y (s , u , v , n) ;
// mat r i x m u l t i p l i c a t i o n
Mu l t i p l y (t , A , B, n) ;

Slides-2

Saurav

55/57

Function Pointers

suppose we want to write a function to implement the
solution of the non-linear equation f (x) = 0 using
Newton-Raphson

where f is user specified

may want to call this function more than once for solving
non-linear equations

and for diffferent user-specified function during the same
execution

to achieve this we need to specify the appropriate
non-linear function each time the function is called

this may be done using function pointers.

Slides-2

Saurav

56/57

we specify two functions

we declare a function pointer *p function

this declaration specifies that the function that this
pointer refers to must

1 accept one input argument which is double precision
2 return one double precision floating point variable

doub l e (∗ p f u n c t i o n) (doub l e x) ;

p f u n c t i o n = &myFunction ;
cout << p f u n c t i o n (2 . 0) << end l ;

p f u n c t i o n = &myotherFunct ion ;
cout << p f u n c t i o n (2 . 0) << end l ;

Slides-2

Saurav

57/57

Recursive Functions

in some applications, we may wish to call a function from
within the same function:

this is known as recursion

and is possible in C++

the simplest application is calculation of factorial of a
positive integer n, denoted by fact (n)

fact(n) = n × fact(n − 1), n > 1

fact(n) = 1, n = 1

r e t u r n (n ∗ C a l c u l a t e F a c t o r i a l (n − 1)) ;

