
Objects and Classes

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

August 20, 2024

Saurav Samantaray Objects and Classes 1 / 23

C++ Objects as Data Types

C++ objects can represent: variables of a user-defined data type

English Measurement Class
Create a class that can be used to store the measurement of
certain distances.

the units of measurement is British.

what all would be the data?

how to initialise an object i.e. assign data to a member of the
class?

how to access the data from an object of the class?

Saurav Samantaray Objects and Classes 2 / 23

English Measurement Class
// englobj.cpp
// objects using English measurements
#include <iostream>
using namespace std;
class Distance
{
private:

int feet;
float inches;

public:
//English Distance class
void setdist(int ft, float in) //set Distance to args
{ feet = ft; inches = in; }

void getdist() //get length from user
{
cout << ''\nEnter feet: '';
cin >> feet;
cout << ''Enter inches: '';
cin >> inches;
}

Saurav Samantaray Objects and Classes 3 / 23

C++ Objects as Data Types

void showdist() //display distance
{ cout << feet << '' \t '' << inches <<'' \t '' <<endl; }

};
///
int main()
{
Distance dist1, dist2; //define two lengths

dist1.setdist(11, 6.25); //set dist1
dist2.getdist(); //get dist2 from user

//display lengths
cout << '' \ndist1 = ''; dist1.showdist();
cout << '' \ndist2 = ''; dist2.showdist();
cout << endl;
return 0;
}

Saurav Samantaray Objects and Classes 4 / 23

Constructors

The ENGLOBJ example shows two ways that member functions
can be used to give values to the data items in an object.

Sometimes, however, it’s convenient if an object can initialise
itself when it’s first created,

without requiring a separate call to a member function.

Saurav Samantaray Objects and Classes 5 / 23

Example

We will create a class of objects that might be useful as a
general-purpose programming element.
A counter is a variable that counts things.
Maybe it counts
− > file accesses,
− > or the number of times the user presses the Enter key,
− > or the number of customers entering a bank.
Each time such an event takes place, the counter is incremented
(1 is added to it).
The counter can also be accessed to find the current count.
Let’s assume that this counter is important in the program and
must be accessed by many different functions.
In procedural languages such as C, a counter would probably be
implemented as a global variable.
However, global variables complicate the program’s design and
may be modified accidentally.

Saurav Samantaray Objects and Classes 6 / 23

COUNTER Class

This example, COUNTER, provides a counter variable that can be
modified only through its member functions.
// counter.cpp
// object represents a counter variable
#include <iostream>
using namespace std;
//
class Counter
{
private:

unsigned int count; //count
public:

void set count (int i) // set count = i;
{count = i;}

void inc count() //increment count
{ count++; }

int get count() //return count
{ return count; }

};

Saurav Samantaray Objects and Classes 7 / 23

Counter

The Counter class has one data member: count, of type
unsigned int (since the count is always positive).

It has three member functions:
− > set count, which set the value of count;
− > inc count(), which adds 1 to count;
− > and get count(), which returns the current value of
count.

Automatic Initialisation
Most counts start at 0.

When an object of type Counter is first created, we want its
count to be initialised to 0

one could use the set count() function to do this, and call it
with an argument of 0,

or we could provide a zero count() function, which would
always set count to 0.

Saurav Samantaray Objects and Classes 8 / 23

Automatic Initialisation

A function would need to be executed every time we created a
Counter object.

Counter c1; //every time we do this,
c1.zero count(); //we must do this too

This is mistake prone, because the programmer may forget to
initialise the object after creating it.

It’s more reliable and convenient, especially when there are a
great many objects of a given class, to cause each object to
initialise itself when it’s created.

Automatic initialisation can be carried out using a special
member function called a constructor.

A constructor is a member function that is executed
automatically whenever an object is created.

Saurav Samantaray Objects and Classes 9 / 23

Automatic Initialisation in COUNTER Class

// counter.cpp
// object represents a counter variable
#include <iostream>
using namespace std;
//
class Counter
{
private:

unsigned int count; //count
public:

Counter() : count(0) //constructor
{ /*empty body*/ }

void inc count() //increment count
{ count++; }

int get count() //return count
{ return count; }

};

Saurav Samantaray Objects and Classes 10 / 23

Automatic Initialization

Now, in the Counter class, the constructor Counter() does
this.

This function is called automatically whenever a new object of
type Counter is created.

Thus in main() the statement Counter c1, c2; creates
two objects of type Counter.

As each is created, its constructor, Counter(), is executed.

This function sets the count variable to 0.

So the effect of this single statement is to not only create two
objects, but also to initialize their count variables to 0.

Saurav Samantaray Objects and Classes 11 / 23

Same Name as the Class

There are some unusual aspects of constructor functions.

First, they have exactly the same name (Counter in this example)
as the class of which they are members.

This is one way the compiler knows they are constructors. (it is
no accident)

Second, no return type is used for constructors. Why not?

Since the constructor is called automatically by the system,

there’s no program for it to return anything to; a return value
wouldn’t make sense.

This is the second way the compiler knows they are constructors.

Saurav Samantaray Objects and Classes 12 / 23

Initializer List

In the Counter class the constructor must initialise the count
member to 0.

One might think that this would be done in the constructor’s
function body, like this:
count()
{ count = 0; }
However, this is not the preferred approach (although it does
work).

Here’s how one should initialise a data member:
Counter() : count(0) {}
The initialisation takes place following the member function
declarator but before the function body.

It’s preceded by a colon.

The value is placed in parentheses following the member data.

Saurav Samantaray Objects and Classes 13 / 23

Initialiser List

If multiple members must be initialised, they’re separated by
commas.
The result is the initialiser list (sometimes called by other names,
such as the member-initialisation list).
someClass():m1(7), m2(33), m2(4) ← initialiser
list

{ }
Why not initialise members in the body of the constructor ?

The reasons are complex,

members initialised in the initialiser list are given a value before
the constructor even starts to execute.

This is important in some situations.

For example, the initialiser list is the only way to initialise const
member data and references.

Saurav Samantaray Objects and Classes 14 / 23

A Proof that the Constructor Works

For a proof that the constructor is operating as advertised, one
can rewrite the constructor to print a message when it executes.
Counter() : count(0)
{ cout << ’’ I’m the constructor ’’ << endl
; }
Constructors are pretty amazing when you think about it.

If you define an int, for example, somewhere there’s a
constructor allocating four bytes of memory for it.

Saurav Samantaray Objects and Classes 15 / 23

Overloaded Constructors

It’s convenient to be able to give variables of type Distance a
value when they are first created.

That is, we would like to use definitions like
Distance width(5, 6.25);

which defines an object, width, and simultaneously initialises it
to a value of 5 for feet and 6.25 for inches.

To do this we write a constructor like this:
Distance(int ft, float in) : feet(ft),
inches(in)
{ }
This sets the member data feet and inches to whatever values are
passed as arguments to the constructor. So far so good.

However, we also want to define variables of type Distance
without initialising them
Distance dist1, dist2;

Saurav Samantaray Objects and Classes 16 / 23

Overloaded Constructors

We had programs with no constructor, but our definitions worked
just fine.

How could they work without a constructor?

Because an implicit no-argument constructor is built into the
program automatically by the compiler,

it’s this constructor that created the objects, even though we
didn’t define it in the class.

This no-argument constructor is called the default constructor.

Often we want to initialise data members in the default
(no-argument) constructor as well.

If we let the default constructor do it, we don’t really know what
values the data members may be given.

If we care what values they may be given, we need to explicitly
define the constructor.

Saurav Samantaray Objects and Classes 17 / 23

Overloaded Constructors

We can overload the default constructor infact we already did it
Distance() : feet(0), inches(0.0)
//default constructor
{ } // no function body, doesn’t do
anything

The data members are initialised to constant values, in this case
the integer value 0 and the float value 0.0, for feet and inches
respectively.

Now we can use objects initialised with the no-argument
constructor and be confident that they represent no distance (0
feet plus 0.0 inches) rather than some arbitrary value.

Since there are now two explicit constructors with the same
name, Distance(), we say the constructor is overloaded.

Which of the two constructors is executed when an object is
created depends on how many arguments are used in the
definition

Saurav Samantaray Objects and Classes 18 / 23

Member Functions Defined Outside the Class

So far we had seen member functions that were defined inside
the class definition.
The member function, add dist(), is not defined within the
Distance class definition.
It is only declared inside the class, with the statement
void add dist(Distance, Distance);
This tells the compiler that this function is a member of the class
but that it will be defined outside the class declaration,
someplace else in the listing.

void Distance::add dist(Distance d2, Distance d3)
{

inches = d2.inches + d3.inches; //add the inches
feet = 0; //(for possible carry)
if(inches >= 12.0) //if total exceeds 12.0,
{ //then decrease inches

inches −= 12.0; //by 12.0 and
feet++; //increase feet

} //by 1
feet += d2.feet + d3.feet; //add the feet

}
Saurav Samantaray Objects and Classes 19 / 23

Member Functions Defined Outside the Class

The declarator in this definition contains some unfamiliar syntax.

The function name, add dist(), is preceded by the class name,
Distance, and a new symbol—the double colon (::).

This symbol is called the scope resolution operator.

It is a way of specifying what class something is associated with.

In this situation, Distance::add dist() means “the add dist()
member function of the Distance class.”

Saurav Samantaray Objects and Classes 20 / 23

Objects as Arguments

The two distances to be added, dist1 and dist2, are supplied
as arguments to add dist().

The syntax for arguments that are objects is the same as that for
arguments that are simple data types such as int:

The object name is supplied as the argument

Close examination of add dist() emphasizes some important
truths about member functions.

A member function is always given access to the object for which
it was called: the object connected to it with the dot operator.

But it may be able to access other objects.

what objects can add dist() access?
dist3.add dist(dist1, dist2);

it can also access dist1 and dist2, because they are supplied
as arguments.

Saurav Samantaray Objects and Classes 21 / 23

Objects as Arguments

the member function always has access to the data of the object,
even though it is not supplied as an argument

“Execute the add dist() member function of dist3.” When the
variables feet and inches are referred to within this function, they
refer to dist3.feet and dist3.inches.

To summarize, every call to a member function is associated
with a particular object (unless it’s a static function; we’ll get to
that later).

Using the member names alone (feet and inches), the function
has direct access to all the members, whether private or public,
of that object.

It also has indirect access, using the object name and the member
name, connected with the dot operator (dist1.inches or dist2.feet)
to other objects of the same class that are passed as arguments.

Saurav Samantaray Objects and Classes 22 / 23

Saurav Samantaray Objects and Classes 23 / 23

