
Objects and Classes

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

August 26, 2024

Saurav Samantaray Objects and Classes 1 / 21

The Default Copy Constructor

Seen two ways to initialise objects:
1 A no-argument constructor can initialise data members to

constant values, and
2 a multi-argument constructor can initialise data members to

values passed as arguments.

Can we initialise it with another object of the same type?

see ecopycon.cpp

We initialise dist1 to the value of 11’ -6.25” using the
two-argument constructor.

Then we define two more objects of type Distance, dist2 and
dist3,

initialising both to the value of dist1.

Saurav Samantaray Objects and Classes 2 / 21

The Default Copy Constructor

this should require us to define a one-argument constructor ??
but initializing an object with another object of the same type is a
special case.
We don’t need to create a special constructor for this; one is
already built into all classes.
It’s called the default copy constructor.
It’s a one-argument constructor whose argument is an object of
the same class as the constructor.
These definitions both use the default copy constructor.
This causes the default copy constructor for the Distance class to
perform a member-by-member copy of dist1 into dist2. (for
dist3 as well)
Although this looks like an assignment statement, it is not.
Both formats invoke the default copy constructor, and can be
used interchangeably.

Distance dist1(11, 6.25); //two−arg constructor
Distance dist2(dist1); //one−arg constructor
Distance dist3 = dist1; //also one−arg constructor

Saurav Samantaray Objects and Classes 3 / 21

Returning Objects from Functions

two distances were passed to add dist() as arguments (see
// englcon.cpp)
and the result was stored in the object of which add dist()
was a member, namely dist3.
see englret.cpp
In main(), the result is assigned to dist3 in the statement:
dist3 = dist1.add dist(dist2);

//add this distance to d2, return the sum
Distance Distance::add dist(Distance d2)
{

Distance temp; //temporary variable
temp.inches = inches + d2.inches; //add the inches
if(temp.inches >= 12.0) //if total exceeds 12.0,
{ //then decrease inches

temp.inches −= 12.0; //by 12.0 and
temp.feet = 1; //increase feet

} //by 1
temp.feet += feet + d2.feet; //add the feet
return temp;

}
Saurav Samantaray Objects and Classes 4 / 21

Returning Objects from Functions

a temporary object of class Distance is created.

This object holds the sum until it can be returned to the calling
program.

The sum is calculated by adding two distances.

The first is the object of which add dist() is a member,
dist1.

Its member data is accessed in the function as feet and inches.

The second is the object passed as an argument, dist2.

Its member data is accessed as d2.feet and d2.inches.

The result is stored in temp and accessed as temp.feet and
temp.inches.

The temp object is then returned by the function using the
statement

Notice that dist1 is not modified; it simply supplies data to
add dist().

Saurav Samantaray Objects and Classes 5 / 21

Result returned from the temporary object

Saurav Samantaray Objects and Classes 6 / 21

A Card-Game Example

see cardobj.cpp, it does not introduce any new concepts
but it does use almost all the programming ideas we’ve discussed
up to this point.
CARDOBJ creates three cards with fixed values and switches
them around in an attempt to confuse the user about their
location.
in CARDOBJ each card is an object of class card.
The isEqual() function checks whether the card is equal to a
card supplied as an argument.
It uses the conditional operator to compare the card of which it is
a member with a card supplied as an argument.
This function could also have been written with an if...else
statement
but the conditional operator is more compact.

if(number == c2.number && suit == c2.suit)
return true;

else
return false;

Saurav Samantaray Objects and Classes 7 / 21

Classes, Objects, and Memory

There is an impression that each object created from a class
contains separate copies of that class’s data and member
functions.

This is a good first approximation, since it emphasises that
objects are complete, self-contained entities, designed using the
class definition.

The mental image here is of cars (objects) rolling off an
assembly line, each one made according to a blueprint (the
class definitions).

Actually, things are not quite so simple.

It’s true that each object has its own separate data items.

On the other hand, contrary to what you may have been led to
believe, all the objects in a given class use the same member
functions.

The member functions are created and placed in memory only
once when they are defined in the class definition.

Saurav Samantaray Objects and Classes 8 / 21

Classes, Objects, and Memory

This makes sense;

there’s really no point in duplicating all the member functions in
a class every time you create another object of that class, since
the functions for each object are identical.

The data items, however, will hold different values, so there must
be a separate instance of each data item for each object.

Data is therefore placed in memory when each object is defined,
so there is a separate set of data for each object.

In the SMALLOBJ example, there are two objects of type
smallobj, so there are two instances of somedata in
memory.

However, there is only one instance of the functions
setdata() and showdata()

These functions are shared by all the objects of the class.

Saurav Samantaray Objects and Classes 9 / 21

Objects, data, functions, and memory

Saurav Samantaray Objects and Classes 10 / 21

Static Class Data

If a data item in a class is declared as static, only one such item is
created for the entire class, no matter how many objects there are. (see
statdata.cpp)

A static data item is useful when all objects of the same class must
share a common item of information.

A member variable defined as static has characteristics similar to a
normal static variable:

It is visible only within the class, but its lifetime is the entire program.

It continues to exist even if there are no objects of the class.

static class member data is used to share information among the objects
of a class.

As an example, suppose an object needed to know how many other
objects of its class were in the program.

In a road-racing game, for example, a race car might want to know how
many other cars are still in the race.

In this case a static variable count could be included as a member of
the class.

It would be the same variable for all of them; they would all see the
same count.

Saurav Samantaray Objects and Classes 11 / 21

Static Class Data

The class foo in this example has one data item, count, which is
type static int.

constructor for this class causes count to be incremented.

In main() we define three objects of class foo.

Since the constructor is called three times, count is incremented
three times.

the member function, getcount(), returns the value in count.

We call this function from all three objects, and—as we
expected—each prints the same value
count is 3 −→ static data

If we had used an ordinary automatic variable—as opposed to a
static variable—for count, each constructor would have
incremented its own private copy of count once, and the output
would have been
count is 1 −→ automatic data

Saurav Samantaray Objects and Classes 12 / 21

Static versus automatic member variables.

Saurav Samantaray Objects and Classes 13 / 21

Separate Declaration and Definition

Static member data requires an unusual format.

Ordinary variables are usually declared (the compiler is told about their name
and type) and defined (the compiler sets aside memory to hold the variable) in
the same statement.

Static member data, on the other hand, requires two separate statements.

The variable’s declaration appears in the class definition, but the variable is
actually defined outside the class, in much the same way as a global variable.

Why is this two-part approach used?

If static member data were defined inside the class, it would violate the idea
that a class definition is only a blueprint and does not set aside any memory.

Putting the definition of static member data outside the class also serves to
emphasise that the memory space for such data is allocated only once, before
the program starts to execute,

and that one static member variable is accessed by an entire class;

In this way a static member variable is more like a global variable.

Saurav Samantaray Objects and Classes 14 / 21

const and Classes

const used on normal variables to prevent them from being
modified,
and const can be used with function arguments to keep a
function from modifying a variable passed to it by reference.
We can introduce some other uses of const: on member
functions, on member function arguments, and on objects.
A const member function guarantees that it will never modify
any of its class’s member data.

//constfu.cpp
//demonstrates const member functionsxw
class aClass
{
private:

int alpha;
public:

void nonFunc() //non−const member function
{ alpha = 99; } //OK

void conFunc() const //const member function
{ alpha = 99; } // ERROR: can't modify a member

};
Saurav Samantaray Objects and Classes 15 / 21

const and Classes

The non-const function nonFunc() can modify member
data alpha, but the constant function conFunc() can’t.

If it tries to, a compiler error results.

A function is made into a constant function by placing the
keyword const after the declarator but before the function
body.

If there is a separate function declaration, const must be used
in both declaration and definition.

Member functions that do nothing but acquire data from an
object are obvious candidates for being made const, because
they don’t need to modify any data.

Making a function const helps the compiler flag errors, and
tells anyone looking at the listing that you intended the function
not to modify anything in its object.

see engConst.cpp

Saurav Samantaray Objects and Classes 16 / 21

const Member Function Arguments

if an argument is passed to an ordinary function by reference,
and you don’t want the function to modify it, the argument
should be made const in the function declaration (and definition).

This is true of member functions as well.

the argument to add dist() is passed by reference, and we
want to make sure that it won’t modified.

Therefore we make the argument d2 to add dist() const in
both declaration and definition.

Saurav Samantaray Objects and Classes 17 / 21

const Objects

We’ve seen that we can apply const to variables of basic types
such as int to keep them from being modified.
In a similar way, we can apply const to objects of classes.
When an object is declared as const, we can’t modify it.
We can use only const member functions with it, because
they’re the only ones that guarantee not to modify it.
see constObj.cpp
The CONSTOBJ program makes football a const variable.
Now only const functions, such as showdist(), can be
called for this object.
Non-const functions, such as getdist(), which gives the
object a new value obtained from the user, are illegal.
While designing classes it’s a good idea to make const any
function that does not modify any of the data in its object.
This allows the user of the class to create const objects.
These objects can use any const function, but cannot use any
non-const function.

Saurav Samantaray Objects and Classes 18 / 21

Arrays as Class Member Data

Arrays can be used as data items in classes.

Let’s look at an example that models a common computer data
structure: the stack.

A stack works like the spring-loaded devices that hold trays in
cafeterias. When you put a tray on top, the stack sinks down a
little; when you take a tray off, it pops up. The last tray placed
on the stack is always the first tray removed.

see stakaray.cpp

The important member of the stack is the array st.

An int variable, top, indicates the index of the last item placed
on the stack; the location of this item is the top of the stack.

The size of the array used for the stack is specified by MAX, in
the statement

it’s preferable to define constants that will be used entirely within
a class, as MAX is here, within the class.

Saurav Samantaray Objects and Classes 19 / 21

Arrays as Class Member Data
Thus the use of global const variables for this purpose is nonoptimal.
Standard C++ mandates that we should be able to declare MAX within the class
as:
static const int MAX = 10;

This means that MAX is constant and applies to all objects in the class.

Since memory grows
downward in the figure,
the top of the stack is at
the bottom in the figure.

When an item is added to the
stack, the index in top is
incremented to point to the new
top of the stack.

When an item is removed, the
index in top is decremented.

We don’t need to erase the old
value left in memory when an
item is removed; it just
becomes irrelevant.

To place an item on the stack -
call the push()

To retrieve - use the pop()
member functionSaurav Samantaray Objects and Classes 20 / 21

Arrays of Objects

We can create an array of objects.

see englaray.cpp

In this program the user types in as many distances as desired.

After each distance is entered, the program asks if the user
desires to enter another.

If not, it terminates, and displays all the distances entered so far.

A class member function that is an array element is accessed by
the dot operator:
dist[j].showdist();

The array name followed by the index in brackets is joined, using
the dot opera- tor, to the member function name followed by
parentheses.

Saurav Samantaray Objects and Classes 21 / 21

