
Operator Overloading

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

September 3, 2024

Saurav Samantaray Operator Overloading 1 / 21

Operator Overloading

Operator overloading is one of the most exciting features of
object-oriented programming.

It can transform complex, obscure program listings into
intuitively obvious ones.

statements like:
d3.addobjects(d1, d2);
or the similar but equally obscure d3 =
d1.addobjects(d2);
can be changed to the much more readable
d3 = d1 + d2;

The term operator overloading refers to giving the normal C++
operators, such as +, ∗, <=, and + =, additional meanings when
they are applied to user-defined data types.

Saurav Samantaray Operator Overloading 2 / 21

Operator Overloading

Normally
a = b + c;
works only with basic types such as int and float

attempting to apply it when a, b, and c are objects of a
user-defined class will cause complaints from the compiler.

using overloading, one can make this statement legal even when
a, b, and c are user-defined types

If one finds oneself limited by the way the C++ operators work,
one can change them to do whatever they want.

operator overloading gives one the opportunity to redefine the
C++ language

using classes to create new kinds of variables

operator overloading to create new definitions for operators

one can extend C++ to be, in many ways, a new language of their
own design.

Saurav Samantaray Operator Overloading 3 / 21

Overloading Unary Operators

An operand is simply a variable acted on by an operator

unary operators act on only one operand

Examples of unary operators are the increment and decrement
operators ++ and −−, and the unary minus, as in −33.

In the ”COUNTER” example, we created a class Counter to keep
track of a count. Objects of that class were incremented by
calling a member function:
c1.inc count();

That did the job, but the listing would have been more readable if
we could have used the increment operator ++ instead:
++c1;

programmers would guess immediately that this expression
increments c1

Let’s rewrite COUNTER to make this possible (see
countpp1.cpp)

Saurav Samantaray Operator Overloading 4 / 21

Overloading Unary Operators

How do we teach a normal C++ operator to act on a user-defined
operand?

The keyword operator is used to overload the ++ operator in this
declarator:
void operator ++ ()

The return type (void in this case) comes first, followed by the
keyword operator, followed by the operator itself (++), and
finally the argument list enclosed in parentheses (which are
empty here).

This declarator syntax tells the compiler to call this member
function whenever the ++ operator is encountered, provided the
operand (the variable operated on by the ++) is of type Counter.

Saurav Samantaray Operator Overloading 5 / 21

Overloading Unary Operators

How does the compiler distinguish between standard operators
and overloaded operators?

In case of “Functions,” the only way the compiler can distinguish
between overloaded functions is by looking at the data types and
the number of their arguments.

Similarly, with overloaded operators by looking at the data type
of their operands.

If the operand is a basic type such as an int, as in
++intvar;
then the compiler will use its built-in routine to increment an int.

But if the operand is a ”Counter” variable, the compiler will
know to use our user-written operator++() instead.

Saurav Samantaray Operator Overloading 6 / 21

Operator Arguments

In main() the ++ operator is applied to a specific object, as in
the expression ++c1.

Yet operator++() takes no arguments.

What does this operator increment?

It increments the count data in the object of which it is a member.

But how ?

Since member functions can always access the particular object
for which they’ve been invoked, this operator requires no
arguments.

Saurav Samantaray Operator Overloading 7 / 21

Overloading Unary Operators

Operator Return Values
The operator++() function in
the ”COUNTPP1” program has a
subtle defect.

One will discover it if you use a
statement like this in main():
c1 = ++c2;

The compiler will complain.

Why? Because we have defined
the ++ operator to have a return
type of void in the operator
++() function, while in the
assignment statement it is being
asked to return a variable of type
Counter.

That is, the compiler is being
asked to return whatever value
c2 has after being operated on
by the ++ operator, and
assign this value to c1.

So as defined in ”COUNTPP1”,
we can’t use ++ to increment
Counter objects in assignments;
it must always stand alone with
its operand.

Of course the normal ++
operator, applied to basic data
types such as int, would not
have this problem

Saurav Samantaray Operator Overloading 8 / 21

Overloading Unary Operators

To make it possible to use our homemade operator ++() in
assignment expressions, we must provide a way for it to return a
value.
Here the operator++() function creates a new object of type
Counter, called temp, to use as a return value.
It increments the count data in its own object as before, then
creates the new temp object and assigns count in the new object
the same value as in its own object.
Finally, it returns the temp object.
see ”countpp2.cpp”.

Nameless Temporary Objects
In COUNTPP2 we created a temporary object of type Counter,
named temp, whose sole purpose was to provide a return value
for the ++ operator. This required three statements.
There are more convenient ways to return temporary objects
from functions and overloaded operators. (see countpp3.cpp)

Saurav Samantaray Operator Overloading 9 / 21

Overloading Unary Operators

In this program a single statement
return Counter(count);
does what all three statements did in COUNTPP2.

This statement creates an object of type Counter.

This object has no name; it won’t be around long enough to need
one.

This unnamed object is initialised to the value provided by the
argument count.

Doesn’t this require a constructor that takes one argument?

It does, and to make this statement work we inserted just such a
constructor into the member function list in COUNTPP3.
Counter(int c) : count(c) //constructor,
one arg
{ }
Once the unnamed object is initialized to the value of count, it
can then be returned.

Saurav Samantaray Operator Overloading 10 / 21

Overloading Unary Operators
Postfix Notation

So far we’ve shown the increment operator used only in its prefix form.
++c1

What about postfix, where the variable is incremented after its value is used in
the expression?
c1++

To make both versions of the increment operator work, we define two
overloaded ++ operators

see ”postfix.cpp”

Now there are two different declarators for overloading the ++ operator. The
one we’ve seen before, for prefix notation, is
Counter operator ++ ()

The new one, for postfix notation, is
Counter operator ++ (int)

The only difference is the int in the parentheses.

It’s simply a signal to the compiler to create the postfix version of the operator.

The designers of C++ are fond of recycling existing operators and keywords to
play multiple roles, and int is the one they chose to indicate postfix.

Saurav Samantaray Operator Overloading 11 / 21

Overloading Binary Operators

Binary operators can be overloaded just as easily as unary operators.

We’ll look at examples that overload:

arithmetic operators,

comparison operators,

arithmetic assignment operators.

Arithmetic Operators
(ENGLCON) two English Distance objects could be added using
a member function add dist():
dist3.add dist(dist1, dist2);

By overloading the + operator we can reduce this dense-looking
expression to
dist3 = dist1 + dist2;

see ”englplus.cpp”

Saurav Samantaray Operator Overloading 12 / 21

Overloading Binary Operators

In class Distance the declaration for the operator+ ()
function looks like this:
Distance operator + (Distance);

This function has a return type of Distance, and takes one
argument of type Distance.

In expressions like
dist3 = dist1 + dist2;
how the return value and arguments of the operator relate to the
objects ?

When the compiler sees this expression it looks at the argument
types, and finding only type Distance, it realizes it must use
the Distance member function operator+().

But what does this function use as its argument—dist1 or
dist2?

Doesn’t it need two arguments, since there are two numbers to be
added?

Saurav Samantaray Operator Overloading 13 / 21

Overloading Binary Operators

The argument on the left side of the operator (dist1 in this
case) is the object of which the operator is a member.
The object on the right side of the operator (dist2) must be
furnished as an argument to the operator.
The operator returns a value, which can be assigned or used in
other ways; in this case it is assigned to dist3.

Saurav Samantaray Operator Overloading 14 / 21

Overloading Binary Operators

Comparison Operators
we’ll overload the less than operator (<) in the Distance class
so that we can compare two distances.

see ”engless.cpp”

The approach used in the operator<() function is similar to
overloading the + operator, except that here the operator<()
function has a return type of bool.

The return value is false or true, depending on the comparison of
the two distances.

The comparison is made by converting both distances to
floating-point feet, and comparing them using the normal ¡
operator.

Saurav Samantaray Operator Overloading 15 / 21

Overloading Binary Operators

Arithmetic Assignment Operators
the += operator, combines assignment and addition into one step

see ”englpleq.cpp”

In this program the addition is carried out in main() with the
statement
dist1 += dist2;

This causes the sum of dist1 and dist2 to be placed in
dist1.

Notice the difference between the function used here,
operator+=(), and operator+() used earlier.

In the earlier operator+() function, a new object of type
Distance had to be created and returned by the function so it
could be assigned to a third Distance object, as in
dist3 = dist1 + dist2;

In the operator+=() function the object that takes on the
value of the sum is the object of which the function is a member.

Saurav Samantaray Operator Overloading 16 / 21

Overloading Binary Operators

Arithmetic Assignment Operators
The operator+=() function has no return value; it returns
type void.
A return value is not necessary with arithmetic assignment
operators such as +=, because the result of the assignment
operator is not assigned to anything.
The operator is used alone, in expressions like the one in the
program.
dist1 += dist2;
If we wanted to use this operator in more complex expressions,
like
dist3 = dist1 += dist2;
then you would need to provide a return value.
This could be done by ending the operator+=() function
with a statement like
return Distance(feet, inches);
in which a nameless object is initialized to the same values as
this object and returned.

Saurav Samantaray Operator Overloading 17 / 21

The Subscript Operator ([])

The subscript operator, [], which is normally used to access array
elements, can be overloaded.
This is useful if we want to modify the way arrays work in C++.
For example, we might want to make a “safe” array:

One that automatically checks the index numbers we use to
access the array
to ensure that they are not out of bounds

To be useful, the overloaded subscript operator must return by
reference.
To see why this is true, we’ll see three example programs that
implement a safe array, each one using a different approach to
inserting and reading the array elements:

Separate put() and get() functions
A single access() function using return by reference
The overloaded [] operator using return by reference

All three programs create a class called safearay, whose only
member data is an array of 100 int values, and all three check to
ensure that all array accesses are within bounds.

Saurav Samantaray Operator Overloading 18 / 21

Separate get() and put() Functions

The first program provides two functions to access the array
elements:
putel() to insert a value into the array, and
getel() to find the value of an array element.
Both functions check the value of the index number supplied to
ensure it’s not out of bounds; that is, less than 0 or larger than the
array size (minus 1).
See ”arrover1.cpp”
”exit(0) indicates successful program termination to the OS
”exit(1) indicates unsuccessful program termination to the
OS
The data is inserted into the safe array with the putel()
member function, and then displayed with getel().
This implements a safe array; we’ll receive an error message if
we attempt to use an out-of-bounds index.
However, the format is a bit crude.

Saurav Samantaray Operator Overloading 19 / 21

Single access() Function Returning by Reference

We can use the same member function both to insert data into the
safe array and to read it out.

The secret is to return the value from the function by reference.

This means we can place the function on the left side of the equal
sign, and the value on the right side will be assigned to the
variable returned by the function.

See ”arrover2.cpp”

The statement
sa1.access(j) = j*10; // *left* side of
equal sign
causes the value j*10 to be placed in arr[j], the return value
of the function.

It’s slightly more convenient to use the same function for input
and output of the safe array than it is to use separate functions;
there’s one less name to remember.

Saurav Samantaray Operator Overloading 20 / 21

Overloaded [] Operator Returning by Reference

To access the safe array using the same subscript ([]) operator
that’s used for normal C++ arrays, we overload the subscript
operator in the safearay class.

However, since this operator is commonly used on the left side of
the equal sign, this overloaded function must return by reference.

See ”arrover3.cpp”

In this program we can use the natural subscript expressions
sa1[j] = j*10;
and
temp = sa1[j];
for input and output to the safe array.

Saurav Samantaray Operator Overloading 21 / 21

