
Returning Values From Functions

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

September 18, 2024

Saurav Samantaray Returning Values From Functions 1 / 12



Returning Values

When a function completes its execution, it can return a single
value to the calling program.

When a function returns a value, the data type of this value must
be specified.

See ”convert.cpp”

The function declaration does this by placing the data type,
float in this case, before the function name in the declaration
and the definition.

Functions in programs which return no value, so the return type
would be void.

In the CONVERT program, the function lbstokg() (pounds
to kilo- grams, where lbs means pounds) returns type float, so
the declaration is
float lbstokg(float);

Saurav Samantaray Returning Values From Functions 2 / 12



Returning Values

The first float specifies the return type.

The float in parentheses specifies that an argument to be
passed to lbstokg() is also of type float.

When a function returns a value, the call to the function
lbstokg(lbs)
is considered to be an expression that takes on the value returned
by the function.

We can treat this expression like any other variable;
kgs = lbstokg(lbs);

This causes the variable kgs to be assigned the value returned
by lbstokg().

Saurav Samantaray Returning Values From Functions 3 / 12



The return Statement

The function lbstokg() is passed an argument representing a
weight in pounds, which it stores in the parameter pounds.

It calculates the corresponding weight in kilograms by multi-
plying this pounds value by a constant; the result is stored in the
variable kilograms.

The value of this variable is then returned to the calling program
using a return statement:
return kilograms;

Notice that both main() and lbstokg() have a place to store
the kilogram variable:

kgs in main(), and
kilograms in lbstokg().

When the function returns, the value in kilograms is copied
into kgs.

The calling program does not access the kilograms variable
in the function; only the value is returned.

Saurav Samantaray Returning Values From Functions 4 / 12



Returning Values

Saurav Samantaray Returning Values From Functions 5 / 12



Returning Values

While many arguments may be sent to a function, only one argument may be
returned from it.

This is a limitation when we need to return more information.

There are other approaches to returning multiple variables from functions:

One is to pass arguments by reference
Another is to return a structure with the multiple values as
members

We should always include a function’s return type in the function declaration.

If the function doesn’t return anything, use the keyword void to indicate this
fact.

If you don’t use a return type in the declaration, the compiler will assume that
the function returns an int value.

For example, the declaration
somefunc(); // declaration
– assumes return type is int tells the compiler that somefunc() has a return
type of int.

In practice, we shouldn’t take advantage and always specify the return type
explicitly, even if it actually is int.

This keeps the listing consistent and readable.

Saurav Samantaray Returning Values From Functions 6 / 12



Returning Structure Variables

Structures can be used as arguments to functions.

We can also use them as return values.

Saurav Samantaray Returning Values From Functions 7 / 12



Returning by Reference

Besides passing values by reference, we can also return a value
by reference.
Why you would want to do this may seem obscure.
A reason is to allow us to use a function call on the left side of
the equal sign.
This is a somewhat bizarre concept, so let’s look at an example.
See ”retref.cpp”.
In this program the function setx() is declared with a
reference type, int&, as the return type:
int& setx();

This function contains the statement
return x;
where x has been defined as a global variable.
Now—and this is what looks so strange—you can put a call to
this function on the left side of the equal sign:
setx() = 92;

Saurav Samantaray Returning Values From Functions 8 / 12



Returning by Reference

The result is that the variable returned by the function is assigned
the value on the right side of the equal sign.

That is, x is given the value 92. The output from the program
x=92
verifies that this assignment has taken place.

Function Calls on the Left of the Equal Sign
Does this still sound obscure?

Remember that an ordinary function—one that returns a value—
can be used as if it were a value:
y = squareroot(x);

Here, whatever value squareroot(x) has is assigned to y.

The function is treated as if it were a value.

A function that returns a reference, on the other hand, is treated
as if it were a variable.

Saurav Samantaray Returning Values From Functions 9 / 12



Returning by Reference

Function Calls on the Left of the Equal Sign
It returns an alias to a variable, namely the variable in the
function’s return statement.

The function setx() returns a reference to the variable x.

When this function is called, it’s treated as if it were the variable
x.

Thus it can be used on the left side of an equal sign.
There are two corollaries to this.

1 we can’t return a constant from a function that returns by
reference.

2 we can’t return a reference to a local variable

Saurav Samantaray Returning Values From Functions 10 / 12



Returning by Reference

In setx(), we can’t say
int& setx() {

return 3; }
If we try this the compiler will complain that you need an lvalue,
that is, something that can go on the left side of the equal sign: a
variable and not a constant.

returning a reference to a local variable:
int& setx() {

int x = 3;
return x; // error }

What’s wrong with this?

The problem is that a function’s local variables are probably
destroyed when the function returns, and it doesn’t make sense to
return a reference to some- thing that no longer exists.

Saurav Samantaray Returning Values From Functions 11 / 12



why function call on left of equal sign?

In procedural programming there probably isn’t too much use for
this technique.

“Operator Overloading,” we’ll find that returning by reference is
an indispensable technique

Saurav Samantaray Returning Values From Functions 12 / 12


