
Dealing With Multiple Source Files

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

September 23, 2024

Saurav Samantaray Dealing With Multiple Source Files 1 / 5



Dealing with Multiple Source Files

So far, we have been dealing with a single source file and make
into an executable file like:

g++ -o HelloWorld.exe HelloWorld.cpp

What really happens in this process is that the C++ file is first
compiled to another file called HelloWorld.o, and known as an
object file, which is a machine-readable file
In a second step, the object file is compiled into the executable
file and the intermediate object file is deleted
the executable file HelloWorld is excuted using

./HelloWorld.exe

up until this point, we have used a one line compilation
command, allowing us to completely ignore the existence of
object files
when compiling multiple files we do, however, need to be aware
of the existence of these files

Saurav Samantaray Dealing With Multiple Source Files 2 / 5



Dealing with Multiple Source Files

Before we can compile the file main.cpp we first need to compile
the array class to create an object file arrover3.o associated
with this class
this is done, as above, by using the -c option when compiling:

g++ -O -c arrover3.cpp

this produces an object file arrover3.o
we can now compile main.cpp into an object file and then link
the two object files to make an executable
the two compilation commands are now:

g++ -O -c main.cpp
g++ -lm -O -o main.exe main.o arrover3.o

the code may be run as before by typing

./main.exe

Saurav Samantaray Dealing With Multiple Source Files 3 / 5



Using Makefiles

Suppose we have a code that uses several classes stored in
several files
we would rather not compile all of these classes separately every
time one file is modified slightly
this may be avoided by the use of a Makefile–using this approach
only the necessary compilation is carried out
the following is a Makefile for code UseClasses.cpp that uses
two classes, Class1 and Class2

Class1.o : Class1.cpp Class1.hpp
g++ −c −O Class1.cpp

Class2.o : Class2.cpp Class2.hpp
g++ −c −O Class2.cpp

UseClasses.o : UseClasses.cpp Class1.hpp Class2.hpp
g++ −c −O UseClasses.cpp

UseClasses : Class1.o Class2.o UseClasses.o
g++ −O −o UseClasses Class1.o Class2.o UseClasses.o

Saurav Samantaray Dealing With Multiple Source Files 4 / 5



Using Makefiles

If the file above is saved as Makefile, then to generate an up-to-date executable
file UseClasses we simply type

make UseClasses

at the command line

Using this approach only the necessary compilation will be carried out

line 7 of this Makefile tells the compiler that the executable file UseClasses
requires three files: Class1.o, Class2.o and UseClasses.o line 8 gives the rule
for compiling the executable file from its dependencies

line 1 tells the compiler that the file Class1.o depends on the two files
Class1.cpp and Class1.hpp

only if one or both of these files have been changed since the last time this class
has been compiled will this class be recompiled using the rule given on line 2

similar remarks hold for the class Class2

in line 7, the recompilation of UseClasses.o depends not only on the relevant
C++ file, but also on the classes, header files–so that a change in either class
interface will result in a recompilation of the file which uses its functionality

Saurav Samantaray Dealing With Multiple Source Files 5 / 5


