
Data Conversion

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

September 29, 2024

Saurav Samantaray Data Conversion 1 / 12



Data Conversion

The ”=” operator will assign a value from one variable to
another, in statements like
intvar1 = intvar2;
where intvar1 and intvar2 are integer variables.
If ”=” is overloaded correctly it would do the same for the value
of one user-defined object to another
dist3 = dist1 + dist2;
provided they are of the same type.
Normally, when the value of one object is assigned to another of
the same type, the values of all the member data items are simply
copied into the new object.
The compiler doesn’t need any special instructions to use ”=” for
the assignment of user-defined objects such as Distance
objects.
Thus, assignments between types, whether they are basic types
or user-defined types, are handled by the compiler with no effort
on our part.

Saurav Samantaray Data Conversion 2 / 12



Data Conversion

But what happens when the variables on different sides of the
”=” are of different types?

One might think it represents poor programming practice to
convert routinely from one type to another.

Languages such as Pascal go to considerable trouble to keep you
from doing such conversions.

However, the philosophy in C++ (and C) is that the flexibility
provided by allowing conversions outweighs the dangers.

This is a very complicated question (?)

To answer this lets first review how the compiler handles the
conversion of basic types, which it does automatically.

Saurav Samantaray Data Conversion 3 / 12



Conversions Between Basic Types

When we write a statement like
intvar = floatvar;

we are assuming that the compiler will call a special routine to
convert the value of floatvar, which is expressed in floating-point
format, to an integer format so that it can be assigned to intvar.
There are many such conversions: from float to double, char to
float, and so on.
Each such conversion has its own routine, built into the compiler
and called up when the data types on different sides of the equal
sign so dictate.
We say such conversions are implicit because they aren’t
apparent in the listing.
To explicitly do a conversion we use the cast operator.
For instance, to convert float to int, we can say
intvar = static cast<int>(floatvar);

such explicit conversions use the same built-in routines as
implicit conversions.

Saurav Samantaray Data Conversion 4 / 12



Conversions Between Objects and Basic Types

When we want to convert between user-defined data types and
basic types, we can’t rely on built-in conversion routines,
since the compiler doesn’t know anything about user-defined
types besides what we tell it
we must write these routines ourselves.
the next example shows how to convert between a basic type and
a user-defined type, where the user-defined type is English
Distance class and the basic type is float
see ”englconv.cpp”
In main() the program first converts a fixed float quantity—2.35,
representing meters—to feet and inches, using the one-argument
constructor:
Distance dist1 = 2.35F;
Going in the other direction, it converts a Distance to meters in
the statements
mtrs = static cast<float>(dist2);
and
mtrs = dist2;

Saurav Samantaray Data Conversion 5 / 12



Conversions Between Objects and Basic Types

From Basic to User-Defined
To go from a basic type—float in this case—to a user-defined
type such as Distance, we use a constructor with one argument.
These are sometimes called conversion constructors.
the function
Distance(float meters)
{

float fltfeet = MTF * meters;
...

This function is called when an object of type Distance is created
with a single argument.
The function assumes that this argument represents meters.
It converts the argument to feet and inches, and assigns the
resulting values to the object.
Thus the conversion from meters to Distance is carried out along
with the creation of an object in the statement
Distance dist1 = 2.35;

Saurav Samantaray Data Conversion 6 / 12



Conversions Between Objects and Basic Types

From User-Defined to Basic
What about going the other way, from a user-defined type to a
basic type?

The trick here is to create something called a conversion
operator.

Here’s where we do operator float()
{
float fracfeet = inches/12;
...

This operator takes the value of the Distance object of which
it is a member, converts it to a float value representing meters,
and returns this value.

This operator can be called with an explicit cast
mtrs = static cast<float>(dist1);

or with a simple assignment
mtrs = dist2;

Saurav Samantaray Data Conversion 7 / 12



Conversions Between Objects of Different Classes

What about converting between objects of different user-defined
classes?

we can use a one-argument constructor

or we can use a conversion operator.

The choice depends on whether you want to put the conversion
routine in the class declaration of the source object or of the
destination object.

For example, suppose say
objecta = objectb;

where objecta is a member of class A
objectb is a member of class B.

Is the conversion routine located in class A (the destination class,
since objecta receives the value)

or class B (the source class)?

Saurav Samantaray Data Conversion 8 / 12



Two Kinds of Time

Our example programs will convert between two ways of
measuring time: 12-hour time and 24-hour time.
the ”time12” class will represent civilian time, as used in
digital clocks
We’ll assume that in this context there is no need for seconds, so
time12 uses only hours (from 1 to 12), minutes, and an “a.m.”
or “p.m.” designation.
Our time24 class, which is for more exacting applications such as
air navigation, uses hours (from 00 to 23), minutes, and seconds.

Saurav Samantaray Data Conversion 9 / 12



Routine in Source Object

”times1.cpp” shows a conversion routine located in the source
class.
In the main() part of TIMES1 we define an object of type
time24, called t24, and give it values for hours, minutes, and
seconds obtained from the user.
We also define an object of type time12, called t12, and
initialize it to t24 in the statement
time12 t12 = t24;

Since these objects are from different classes, the assignment
involves a conversion
in this program the conversion operator is a member of the
time24 class
time24::operator time12() const
//conversion operator

This function transforms the object of which it is a member to a
time12 object, and returns this object, which main() then
assigns to t12.

Saurav Samantaray Data Conversion 10 / 12



Routine in Destination Object

how the same conversion is carried out when the conversion
routine is in the destination class.

it’s common to use a one-argument constructor

things are complicated by the fact that the constructor in the
destination class must be able to access the data in the source
class to perform the conversion.

The data in time24—hours, minutes and seconds—is private,

so we must provide special member functions in time24 to
allow direct access to it.

These are called getHrs(), getMins(), and getSecs()

The conversion routine is the one-argument constructor from the
time12 class.

This function sets the object of which it is a member to values
that correspond to the time24 values of the object received as
an argument.

Saurav Samantaray Data Conversion 11 / 12



Routine in Destination Object

It works in much the same way as the conversion operator in
TIMES1, except that it must work a little harder to access the
data in the time24 object, using getHrs() and similar
functions.

The main() part of TIMES2 is the same as that in TIMES1.
The one-argument constructor again allows the time24-to-time12
conversion to take place in the statement
time12 t12 = t24;

The output is similar as well.

The difference is behind the scenes, where the conversion is
handled by a constructor in the destination object rather than a
conversion operator in the source object.

Saurav Samantaray Data Conversion 12 / 12


