
Abstract ODE Class

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

October 27, 2024

Saurav Samantaray Abstract ODE Class 1 / 5



Solving an Initial Value Problem

Suppose we want to write an object-oriented program for calculating the
numerical solution of initial value ordinary differential equations of the form

dy

dt
= f(t, y), y(T0) = y0

where f(t, y) is a given function, and T0, y0 are given values.

Many methods exist for calculating the numerical solution of equations such as
these, for example, forward Euler method, various Runge–Kutta methods etc. .

Suppose we want to calculate a numerical solution in the time interval
T0 < t < T1 where T1 is the final time.

To solve this equation numerically, we require the user to specify an integration
step size, which we denote by h.

For the step size h we have we define the points ti, i = 0, 1, 2, · · · , N by

ti = T0 + ih

where h is chosen so that tN = T1.

The numerical solution at these points is denoted by yi, i = 0, 1, 2, · · · , N .

Saurav Samantaray Abstract ODE Class 2 / 5



Numerical Methods
Forward Euler method

set y0 = y0.

For i = 1, 2, · · · , N , yi is given by

yi = yi−1 + hf(ti−1, yi−1).

Fourth order Runge–Kutta method

set y0 = y0.

For i = 1, 2, · · · , N , yi is calculated using the following formulae:

k1 = hf(ti−1, yi−1),

k2 = hf

(
ti−1 +

1

2
h, yi−1 +

1

2
k1

)
,

k3 = hf

(
ti−1 +

1

2
h, yi−1 +

1

2
k2

)
,

k4 = hf (ti−1 + h, yi−1 + k3) ,

yi = yi−1 +
1

6
(k1 + 2k2 + 2k3 + k4).

Saurav Samantaray Abstract ODE Class 3 / 5



The Abstract Class Pattern

One way of implementing these numerical methods would be to
write a class called AbstractOdeSolver that has members
that would be used by all of these numerical methods,

such as variables representing the stepsize and initial conditions,

a method that represents the function f(t, y) on the right-hand
side of the equation above,

and a virtual method SolveEquation for implementing one
of the numerical techniques described above.

We would then implement each of the numerical methods using
a class derived from ]AbstractOdeSolver, and overriding
the virtual function SolveEquation.

The derived classes would then contain members that allow a
specific numerical algorithm to be implemented, as well as the
members of the base class AbstractOdeSolver that would
be required by all of the numerical solvers.

Saurav Samantaray Abstract ODE Class 4 / 5



The Abstract Class Pattern

Using the class structure described above, the base class
AbstractOdeSolver would not actually include a numerical
method for calculating a numerical solution of a differential
equation,

So we would not want to ever create an instance of this class.

It can be automatically enforced by making
AbstractOdeSolver an abstract class.

This is implemented by setting the virtual functions
SolveEquation and RightHandSide to be pure virtual
functions

See ”AbstractOdeSolver.hpp”.

We indicate that these functions are pure virtual functions by
completing the declaration of these members with “= 0”.

Should we mistakenly attempt to create an instance of the class
AbstractOdeSolver we would get a compilation error.

Saurav Samantaray Abstract ODE Class 5 / 5


