
Errors, Exceptions and Testing

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

November 6, 2024

Saurav Samantaray Errors, Exceptions and Testing 1 / 18



Assertion

Assertion (assert) is a way of forcing the program to
terminate execution, should something unexpected happen.
For example, to calculate the square root of a number entered at
the command-line

#include <iostream>
#include <cassert>
#include <cmath>
using namespace std;

int main()
{

double a;
cout << ''Enter a non−negative number\n '';
cin >> a;
//Run without assertion: assert(a >= 0.0);
cout << '' The square root of ''<< a;
cout << '' is '' << sqrt(a) << ''\n'';
return 0;

}

Saurav Samantaray Errors, Exceptions and Testing 2 / 18



Assertion

What happens when a user ignores the request and enters a
negative number at the command line?

Without the assert statement it is likely that the program will
complete without error.

This is because the computer’s floating point unit renders the
result of some calculations such as sqrt(-1.0) as “not a
number” or nan for short.

Other examples of floating point operations which produce the
answer nan include 0.0/0.0 and log(0.0).

Some calculations such as 1.0/0.0 will resolve to a floating point
representation of infinity (inf).

In a program, once one variable has been set to nan or inf then
this value is likely to propagate to later parts of the calculation.

It is normally best to check for this sort of error at the earliest
possible stage so that computation is not wasted.

Saurav Samantaray Errors, Exceptions and Testing 3 / 18



Preconditions

Every section of a program (where a “section” could be a
function, method, block, for-loop iteration body etc.) can be
thought of as having the task to produce a postcondition when
given a valid precondition.

For example, the postcondition of the previous program (the
thing which it is tasked to do) is that it prints the square root of a
given number.

It does this subject to the precondition that the number is
nonnegative.

Consider a method which finds all the roots of a function f(x) in
the half-open range xmin ≤ x ≤ xmax.

This method might need to assume as a precondition that the
function f is continuous and differentiable over the same range
xmin ≤ x ≤ xmax.

More trivially, it might also need to assume that xmin < xmax.

Saurav Samantaray Errors, Exceptions and Testing 4 / 18



Preconditions

What should happen if xmin > xmax or xmin = xmax?

If the precondition for correct functionality is not met then what
should happen?

Some of the most important decisions that a programmer has to
make are about how errors should be treated.

What should happen if the user misreads a prompt and enters
some invalid input?

What should happen if the application writer accidentally
permutes the input arguments of a library function?

What should happen if some numerical scheme has generated
inf or nan?

The answer to all these questions is the same: “It depends”.

It’s good to treat errors differently depending on their severity,
both in terms of how likely they are to happen and in terms of
how easy it might be to fix the problem and carry on.

Saurav Samantaray Errors, Exceptions and Testing 5 / 18



Handling errors

We propose a strategy for handling errors which is built on a
framework of three levels of errors.

1 If the error can be fixed safely, then fix it. If need be, warn the
user.

2 If the error could be caused by some reasonable user input then
throw an exception up to the calling code, since the calling code
should have enough context to fix the problem.

3 If the error should not happen under normal circumstances then
trip an assertion.
These three basic levels could be further refined.
One may distinguish between errors that trip assertions (which
are normally removed in optimised code) and errors that should
halt the program under all circumstances.
At the other end of the scale, you might distinguish between
error fixes which are silent and,
those which should warn the user that something has been
changed.

Saurav Samantaray Errors, Exceptions and Testing 6 / 18



Handling errors

The exception level of error is a compromise between patching
the problem to carry on, and stopping completely.

It is used in circumstances where the caller of a function may
have enough information to be able to deal with the error.

For example, a non-linear Newton root finder may diverge and
hence signal an error,

but the programmer may know that the original task in question
can still be solved by calling the same function with a different
initial guess,

or by calling it with a damping factor, or by calling a bisection
root finder.

The logic would be to first try the Newton solver,

but if that function signalled an error then to find the root using a
more expensive bisection routine.

Saurav Samantaray Errors, Exceptions and Testing 7 / 18



Introducing the Exception

An exception in C++ is a way of interrupting the normal flow of
control of a program and throwing a bundle of information back
to the calling code.
This bundle of information is encapsulated inside an object.
We define in this section a class called Exception, but objects
of any class may be thrown between functions to signal an error.

The use of exceptions requires the keywords try, throw and catch

try is used in the calling code and tells the program to execute some
statements in the knowledge that some error might happen.

throw is used when the error is identified. The function called will
encapsulate information about the error into an Exception object
and throw it back to the caller.

catch is used in the calling code to show how to attempt to fix the
error. Every block of code that has the try keyword must be matched
by a catch block.

Saurav Samantaray Errors, Exceptions and Testing 8 / 18



Implementing Exception Safety via try and catch

try and catch are the most important keywords in C++ as far
as implementing exception safety goes.
To make statements exception safe, we enclose them within a
try block and handle the exceptions that emerge out of the try
block in the catch block:

void SomeFunc()
{

try
{

int* numPtr = new int;
*numPtr = 999;
delete numPtr;

}
catch(...) // ... catches all exceptions
{

cout << ''Exception in SomeFunc(), quitting'' << endl;
}

}

Saurav Samantaray Errors, Exceptions and Testing 9 / 18



Using catch(...) to Handle All Exceptions

See ”mem all.cpp”

Using try and catch in Ensuring Exception Safety in Memory
Allocations

”mem all.cpp” demonstrates the usage of try and catch
blocks.

catch() takes parameters, just like a function does, and ...
means that this catch block accepts all kinds of exceptions.

In this case, however, we might want to specifically isolate
exceptions of type std::bad alloc as these are thrown when
new fails.

Catching a specific type will help us handle that type of problem
in particular, for instance, show the user a message telling what
exactly went wrong.

Saurav Samantaray Errors, Exceptions and Testing 10 / 18



Results

For this example, we used -1 as the number of integers that we
wanted to reserve.

This input is ridiculous, but users do ridiculous things all the
time.

In the absence of the exception handler, the program would
encounter a very ugly end.

But thanks to the exception handler, you see that the output
displays a decent message: Got to end, sorry!

Saurav Samantaray Errors, Exceptions and Testing 11 / 18



Catching Exception of a Type

The exception in ”mem all.cpp” was thrown from the C++
Standard Library.

Such exceptions are of a known type, and

catching a particular type is better for us, as we can pinpoint the
reason for the exception,

do better cleanup, or at least show a precise message to the user.

See ”mem all 1.cpp”.

Compare the output of ”mem all.cpp” and ”mem all 1.cpp”.

We see that we are now able to supply a more precise reason for
the abrupt ending of the application, namely, “bad array new
length.

This is because we have an additional catch block (yes, two catch
blocks), one that traps exceptions of the type catch(bad alloc &),
which is thrown by new.

Saurav Samantaray Errors, Exceptions and Testing 12 / 18



Throwing Exception of a Type Using throw

When we caught std::bad alloc, we actually caught an
object of class std::bad alloc thrown by new.

It is possible for us to throw an exception of our own choosing.

All we need is the keyword throw
void DoSomething()
{

if(something unwanted)
throw object;

}

Saurav Samantaray Errors, Exceptions and Testing 13 / 18



Exception
try {

int age = 15;
if (age >= 18) {
cout << ''Access granted − you are old enough.'';
} else {
throw (age);
}

}
catch (int myNum) {

cout << ''Access denied − You must be at least 18 years old.\n'';
cout << ''Age is: '' << myNum;

}

We use the try block to test some code: If the age variable is less than 18, we
will throw an exception, and handle it in our catch block.

In the catch block, we catch the error and do something about it. The catch
statement takes a parameter: in our example we use an int variable (myNum)
(because we are throwing an exception of int type in the try block (age), to
output the value of age.

If no error occurs (e.g. if age is 20 instead of 15, meaning it will be be greater
than 18), the catch block is skipped:

Saurav Samantaray Errors, Exceptions and Testing 14 / 18



Throwing a Custom Exception at an Attempt to Divide by Zero

See ”div zero.cpp”.

The code not only demonstrates that we are also able to catch
exceptions of type char*.

but also that you caught an exception thrown in a called function
Divide()

Also note that we did not include all of main() within try ;,

we only include the part of it that we expect to throw.

This is generally a good practice, as exception handling can also
reduce the execution performance of our code.

Saurav Samantaray Errors, Exceptions and Testing 15 / 18



How Exception Handling Work

In ”div zero.cpp”, we threw an exception of type char* in
function Divide() that was caught in the catch(char*)
handler in calling function main().
Where an exception is thrown, using throw, the compiler
inserts a dynamic lookup for a compatible catch(Type) that
can handle this exception.
The exception handling logic first checks if the line throwing the
exception is within a try block.
If so, it seeks the catch(Type) that can handle the exception
of this Type.
If the throw statement is not within a try block or if there is no
compatible catch() for the exception type, the exception
handling logic seeks the same in the calling function.
So, the exception handling logic climbs the stack, one calling function
after another, seeking a suitable catch(Type) that can handle the
exception.
At each step in the stack unwinding procedure, the variables local to
that function are destroyed in reverse sequence of their construction.

Saurav Samantaray Errors, Exceptions and Testing 16 / 18



Class std::exception

In catching std::bad alloc, we actually caught an object of
class std::bad alloc thrown by new.

std::bad alloc is a class that inherits from C++ standard
class std::exception, declared in header < exception >.
std::exception is the base class for the following
important exceptions

bad alloc—Thrown when a request for memory using new
fails.
bad cast—Thrown by dynamic cast when you try to cast a
wrong type (a type that has no inheritance relation)
ios base::failure—Thrown by the functions and methods
in the iostream library

Class std::exception that is the base class supports a very
useful and important virtual method what() that gives a more
descriptive reason on the nature of the problem causing the
exception.

Saurav Samantaray Errors, Exceptions and Testing 17 / 18



Exception Class

When an error occurs we want the code to “throw” two pieces of
information: a one-word summary of the problem type and a
more lengthy description of the error.

We write a class Exception (shown below) to store these two
pieces of information, and with the ability to print this
information when required.

Saurav Samantaray Errors, Exceptions and Testing 18 / 18


