
Overloading Copy Constructor

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

November 6, 2024

Saurav Samantaray Overloading Copy Constructor 1 / 10



Shallow Copying and Associated Problems

The MyString contains a pointer member buffer.

see ”mystring.cpp”

This buffer points to a dynamically allocated memory.

The allocation is done in the constructor using new and the
deallocation is carried out in the destructor using delete[].

When an object of this class is copied the ”pointer member” is
copied not the ”pointed memory”

resulting in two members pointing to the same dynamically
allocated buffer in the memory.

When an object is destructed, delete[] deallocates the
memory, thereby invalidating the pointer copy held by the other
object.

Such copies are shallow and are a threat to the stability of the
program

Saurav Samantaray Overloading Copy Constructor 2 / 10



Failure of Shallow Copying

see ”mystring cp.cpp”

Why does class MyString that worked just fine in
”mystring.cpp” failed here?

The only difference is that the use of the object sayHello of
class MyString created in main() has been delegated to
function UseMyString()

This has resulted in object sayHello in main() to be copied
into parameter str used in UseMyString()

This is a copy generated by the compiler as the function has been
declared to take str as a parameter by value and not by
reference

The compiler performs a binary copy of Plain Old Data such as
integers, characters, and pointers to the same.

Saurav Samantaray Overloading Copy Constructor 3 / 10



Failure of Shallow Copying

So the pointer value contained in sayHello.buffer has
simply been copied to str that is, sayHello.buffer points
to the same memory location as str.buffer.
The binary copy did not perform a deep copy of the pointed
memory location, and you now have two objects of class
MyString pointing to the same location in memory.

Thus, when the function UseMyString() ends, variable str
goes out of scope and is destroyed.

Saurav Samantaray Overloading Copy Constructor 4 / 10



Failure of Shallow Copying

The destructor of class MyString is invoked.

It releases the memory allocated to buffer via delete[]

This call to delete[] invalidates the memory being pointed to
in copy sayHello contained in main()

When main() ends, sayHello goes out of scope and is
destroyed.

Now a call is made to delete[], on a memory address that is
no longer valid

This double delete is what results in a crash.

Saurav Samantaray Overloading Copy Constructor 5 / 10



Deep Copy Using a Copy Constructor

The copy constructor can be overloaded and supplied by the
designer, although it is by default available from the compiler.

A copy constructor takes an obejct of the same class by reference
as a parameter.

This parameter is an alias of the source object and is the handle
we have in writing out custom copy code.

We would use copy constructor to ensure a deep copy of all
buffers in the source

see ”deepcopy.cpp”

Saurav Samantaray Overloading Copy Constructor 6 / 10



How Deep Copy Works

Most of the code is similar to the previous MyString code,
except for the new addition of a copy constructor.

In main Creating sayHello results in the first line of output
that comes from the constructor of MyString.

It also displays the memory address of that buffer points to.

main then passes sayHello by value to the function
UseMyString()

apparently, this results in automatic invocation of the copy
constructor.

In the copy constructor it is a deep copy that is performed, where
the content being pointed to is copied to a newly allocated buffer
that belongs to this object

Saurav Samantaray Overloading Copy Constructor 7 / 10



How Deep Copy Works

Now both the objects don’t point to the same address, unlike the
previous case.

that is, two objects don’t point to the same dynamically allocated
memory address

As a result when UseMyString() returns, it destroys the
object in the memory address that was created by the copy
constructor

Saurav Samantaray Overloading Copy Constructor 8 / 10



Why Deep Copy Works

In doing so, it does not touch memory that is being pointed to by
sayHello in main().

So, both functions end and their respective objects are destroyed
successfully and peacefully without the application crashing.

DOs
DO always program a copy constructor and copy assignment
operator when your class contains raw pointer members (char*
and the like).

DO always program the copy constructor with a const
reference source parameter.

Saurav Samantaray Overloading Copy Constructor 9 / 10



Destructor

A destructor is also a special member function like a constructor.

Destructor destroys the class objects created by the constructor.

Destructor has the same name as their class name preceded by a
tilde (∼) symbol.

It is not possible to define more than one destructor.

Destructor neither requires any argument nor returns any value.

It is automatically called when an object goes out of scope.

Destructor release memory space occupied by the objects created
by the constructor.

Saurav Samantaray Overloading Copy Constructor 10 / 10


