Problem Sheet 5

September 26, 2024

Lecturer: Saurav Samantaray

- **Q.1** For a continuous function $f : \mathbf{R} \to \mathbf{R}$ a point x_0 such that $f(x_0) = 0$ is called a root of the function. If for an interval [a, b], $f(a) \cdot f(b) < 0$ then there exists a point $x_0 \in (a, b)$ which is a root of the function. Numerically, there are various methods to find approximate roots of a function in an interval. The bisection method, the secant method and the Newton Raphson method to name but a few. Implement a class called Root_finder which has all the above mentioned methods incorporated to find a root of any function.
- Q.2 Define a vector class that contains a pointer for the entries, an integer for the size of the vector and one, two and maximum norm functions. Overload the following operators appropriately:
 - (a) the "+" operator;
 - (b) the "-" operator;
 - (c) the "*" operator with vector multiplication;
 - (d) overload the operator "[]" to access array elements;
 - (e) how would you achieve scalar multiplication?

Test your definitions on a few simple vectors.

- Q. 3 Design and create a class called "complex" which stands for complex numbers. Overload all the basic operators relevant to this particular class.
- Q. 4 Write a C++ program that returns the elements in a vector that are strictly smaller than their adjacent left and right neighbours.

Example: Original Vector elements: 1 2 5 0 3 1 7 Vector elements that are smaller than its adjacent neighbours: 0