Saurav Samantaray

Research

Research Interests

Journal Publications / Preprints

  1. Samantaray, S.; “Asymptotic Preserving Linearly Implicit Additive IMEX-RK Finite Volume Schemes for Low Mach Number Isentropic Euler Equations.”, arXiv:2409.05854. (2024). Arxiv Link
  2. Crouseilles, N.; Dimarco, G.; Samantaray, S.; “High order Asymptotic Preserving penalized numerical schemes for the Euler-Poisson system in the quasi-neutral limit.”, arXiv:2409.04807. (2024). Arxiv Link
  3. Arun, K. R.; Crouseilles, N.; Samantaray, S.; “High order asymptotic preserving and classical semi-implicit RK schemes for the euler-poisson system in the quasineutral limit.”, J. Sci. Comput. (2024). Arxiv Link, Journal Link
  4. Balsara, D. S.; Samantaray, S.; Subramanian, S.; “Efficient WENO-based prolongation strategies for divergence-preserving vector fields.”, Commun. Appl. Math. Comput.5(2023), no.1, 428–484. Journal Link
  5. Arun, K. R.; Krishnan, M.; Samantaray, S.; “A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation.”, Computers & Fluids 233(2022), Paper No. 105248, 13 pp. Journal Link
  6. Balsara, D. S.; Samantaray, S.; Niknam, K.; Simpson, J. J.; Montecinos, G.; “An Optimized CPML Formulation for High Order FVTD Schemes for CED.”, IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, Pages 183-200. Journal Link
  7. Arun, K. R.; Das Gupta, A. J.; Samantaray, S.; “Analysis of an asymptotic preserving low Mach number accurate IMEX-RK scheme for the wave equation system.”, Appl. Math. Comput.411(2021), Paper No. 126469, 20 pp. Journal Link
  8. Arun, K. R.; Samantaray, S.; “Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations.”, J. Sci. Comput.82(2020), no.2, Art. 35, 32 pp. Journal Link

Conference Publications

  1. Arun, K. R.; Samantaray, S.; “An asymptotic preserving time integrator for low Mach number limits of the Euler equations with gravity.”, Hyperbolic problems: theory, numerics, applications, 279–286. AIMS Ser. Appl. Math., 10. Journal Link
  2. Arun, K. R.; Das Gupta, A. J.; Samantaray, S.; “An implicit–explicit scheme accurate at low Mach numbers for the wave equation system.”, Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, August 2016, 2018, 97-109, Springer International Publishing. Journal Link