Saurav Samantaray
Research
Research Interests
- Numerical Schemes for Hyperbolic PDEs
- Finite Volume Schemes
- Implicit Explicit(IMEX) Runge-Kutta(RK) Schemes
Journal Publications / Preprints
- Samantaray, S.; “Asymptotic Preserving Linearly Implicit Additive IMEX-RK Finite Volume Schemes for Low Mach Number Isentropic Euler Equations.”, arXiv:2409.05854. (2024). Arxiv Link
- Crouseilles, N.; Dimarco, G.; Samantaray, S.; “High order Asymptotic Preserving penalized numerical schemes for the Euler-Poisson system in the quasi-neutral limit.”, arXiv:2409.04807. (2024). Arxiv Link
- Arun, K. R.; Crouseilles, N.; Samantaray, S.; “High order asymptotic preserving and classical semi-implicit RK schemes for the euler-poisson system in the quasineutral limit.”, J. Sci. Comput. (2024). Arxiv Link, Journal Link
- Balsara, D. S.; Samantaray, S.; Subramanian, S.; “Efficient WENO-based prolongation strategies for divergence-preserving vector fields.”, Commun. Appl. Math. Comput.5(2023), no.1, 428–484. Journal Link
- Arun, K. R.; Krishnan, M.; Samantaray, S.; “A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation.”, Computers & Fluids 233(2022), Paper No. 105248, 13 pp. Journal Link
- Balsara, D. S.; Samantaray, S.; Niknam, K.; Simpson, J. J.; Montecinos, G.; “An Optimized CPML Formulation for High Order FVTD Schemes for CED.”, IEEE Journal on Multiscale and Multiphysics Computational Techniques, Vol. 6, Pages 183-200. Journal Link
- Arun, K. R.; Das Gupta, A. J.; Samantaray, S.; “Analysis of an asymptotic preserving low Mach number accurate IMEX-RK scheme for the wave equation system.”, Appl. Math. Comput.411(2021), Paper No. 126469, 20 pp. Journal Link
- Arun, K. R.; Samantaray, S.; “Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations.”, J. Sci. Comput.82(2020), no.2, Art. 35, 32 pp. Journal Link
Conference Publications
- Arun, K. R.; Samantaray, S.; “An asymptotic preserving time integrator for low Mach number limits of the Euler equations with gravity.”, Hyperbolic problems: theory, numerics, applications, 279–286. AIMS Ser. Appl. Math., 10. Journal Link
- Arun, K. R.; Das Gupta, A. J.; Samantaray, S.; “An implicit–explicit scheme accurate at low Mach numbers for the wave equation system.”, Theory, Numerics and Applications of Hyperbolic Problems I: Aachen, Germany, August 2016, 2018, 97-109, Springer International Publishing. Journal Link